
289

DOI: 10.58168/MoInSyTe2024_289-296

УДК 004.9

THE DEVELOPMENT OF A WORD RECOGNITION SYSTEM

Joy MD Tanvir Hasan1, E.A. Anikeev1

1Voronezh State University of Forestry and Technologies named after G.F. Morozov

Abstract. The development of a word recognition system with Python is examined in this

article, with particular attention paid to the process from dataset preparation to model assessment.

Utilizing the powerful libraries provided by Python, such as TensorFlow, PyTorch, and OpenCV, the

research tackles the problem of text recognition in various media, such as printed and handwritten

texts. The approach places significant emphasis on the utilization of Convolutional Neural Networks

(CNNs) [1] to extract visual features, as well as Recurrent Neural Networks (RNNs), specifically

Long Short-Term Memory (LSTM) [2] networks, for effectively processing the sequential character-

istics inherent in textual data. By employing rigorous preprocessing approaches and utilizing estab-

lished assessment criteria, this study demonstrates the efficacy of machine learning methods in aug-

menting word recognition skills. By demonstrating the potential of Python in facilitating the integra-

tion of technology and human language, this work provides a significant addition to the academic

field. The ramifications of the research have substantial importance for advancing data processing

and creating accessible technology.

Keywords: Convolutional Neural Networks, Recurrent Neural Network, Long Short-Term

Memory, word recognition, Python

РАЗРАБОТКА АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ

РАСПОЗНАВАНИЯ СЛОВ

Джой МД Танвир Хасан 1, Е.А. Аникеев141

1ФГБОУ ВО «Воронежский государственный лесотехнический университет

имени Г.Ф. Морозова»

Аннотация. В статье рассматривается разработка системы распознавания слов на

Python, при этом особое внимание уделяется процессу от подготовки набора данных до оценки

модели. Используя мощные библиотеки, предоставляемые Python, такие как TensorFlow,

PyTorch и OpenCV, в исследовании рассматривается проблема распознавания текста на раз-

личных носителях, таких как печатные и рукописные тексты. В этом подходе значительный

© Джой МД Танвир Хасан, Аникеев Е. А., 2024

290

акцент делается на использовании сверточных нейронных сетей (CNN) [1] для извлечения ви-

зуальных признаков, а также рекуррентных нейронных сетей (RNN), в частности сетей с дли-

тельной кратковременной памятью (LSTM) [2], для эффективной обработки последователь-

ных символов, присущих текстовым данным. Используя строгие подходы к предварительной

обработке и установленные критерии оценки, это исследование демонстрирует эффективность

методов машинного обучения в совершенствовании навыков распознавания слов. Демонстри-

руя потенциал Python в области интеграции технологий и человеческого языка, эта работа

представляет собой значительное дополнение к научной деятельности. Результаты исследова-

ния имеют существенное значение для совершенствования обработки данных и создания до-

ступных технологий.

Ключевые слова: Сверточные нейронные сети, рекуррентная нейронная сеть, Долго-

временная кратковременная память, распознавание слов, Python.

With advancements in machine learning and artificial intelligence, it is becom-

ing feasible to establish a connection between the content of our papers and the infor-

mation stored in our files. Word recognition is a crucial component of this bridge that

serves a purpose beyond mere book scanning. With this technology, robots can learn

and use human words. The difficulties of creating a word recognition system with the

Python computer language are looked at in this piece. Python is a widely used pro-

gramming language renowned for its user-friendly interface and robust libraries, which

are recognized for promoting innovative concepts in the fields of data science and ma-

chine learning.

Figure 1 – Example Image for Word Recognition

In the beginning, there was an effort to convert handwritten or typed documents

into a form that computers could read and understand. Word recognition started. Data

input automation, record security, real-time translation, and text-to-speech systems for

the visually impaired all require this position. A multitude of display options, including

various types of handwriting, fonts, sizes, positions, and backdrops, contribute to the

issue. It becomes more difficult to find the right words when all of these factors com-

bine. Due of its extensive library and tool support, Python makes an excellent protag-

onist. Notable examples are TensorFlow, PyTorch, Keras, and OpenCV. No matter

291

your level of expertise, these tools will make short work of these difficulties. How to

use Python to create a word recognition system is the subject of this article. Some of

the most crucial processes are data preparation, model selection, model training, and

system success testing. We are recognizing the enormous impact of word-reading tech-

nology by doing this. In addition to improving computers' efficiency and usefulness,

improving computers' understanding of human language opens the door to innovative

uses of technology that capture people's attention. A word recognition system's im-

provement goes beyond only its technical features. This occurrence shows that we are

getting closer to a future where technology and human connections are more integrated.

Every machine learning model is constructed on top of a sample that has been meticu-

lously prepared. In the context of word recognition tasks, files typically consist of im-

ages or scanned documents containing textual content, along with corresponding tran-

scriptions. The selection of appropriate information holds significant importance. It is

imperative for the model to accurately represent the diverse range of text encountered

in real-world scenarios, encompassing variances in handwriting style, typefaces, text

arrangement, and the intricacy of the backdrop. The IAM Handwriting Database [4]

and the COCO-Text dataset [5] are crucial datasets for these activities. The IAM Hand-

writing Database is utilized for handwriting recognition, while the COCO-Text dataset

is employed for text detection in nature photographs.

Preprocessing prepares raw data for model training and assessment, which is

vital to word recognition system development. This phase aims to normalize input data

to improve the model's capacity to learn from various text pictures. This article covers

each preprocessing stage, emphasizing its value and approach. Normalization is an im-

portant step that makes sure all the pictures in a file are the same size and scale. It is

very important to do this so that the model can handle the data correctly. At this step,

the pictures are changed to the same size so that there aren't any differences in size that

could make learning unfair or ineffective. For instance, larger images might have a

greater impact on the learning process, or a model might struggle to correctly identify

small text. Normalization is the process of changing the pixel values of pictures so that

they all have the same size, which is usually from 0 to 1. By making sure that gradients

are calculated more consistently during training, normalizing pixel values speeds up

the model's convergence [6]. The process of grayscale conversion is employed to de-

crease the number of color channels from three (RGB) to one, to streamline the input

for the model. The decrease in color information is substantial due to the redundancy

of color information in text recognition tasks, which prioritize the shape and structure

of letters rather than their color. Using grayscale conversion has the benefit of making

292

computations simpler. This lets the model focus on finding relevant textual attributes,

which greatly improves its training effectiveness [7]. Denoising removes background

noise from images so models don't have to deal with it. Shadows, paper texture, and

scan defects are among the numerous noise-causing elements. Gaussian blurring and

median filtering smooth images, making text easier to read. When dealing with datasets

of natural pictures with background noise, these procedures are crucial [7]. Threshold-

ing increases text-background contrast. So, the text sticks out more. To convert a gray-

scale image to binary, pixels must be identified as black or white using a cutoff value.

Otsu's thresholding [8] makes text-background separation easier by employing com-

puter methods to establish the optimal threshold setting. A binary format improves the

picture by focusing the model on textual structure rather than color or brightness [7].

Histogram equalization can be used to modify the contrast of photographs. The photos'

contrast is improved with the equalizeHist() function. The design of the neural network

is crucial, necessitating a harmonious equilibrium between intricacy and effectiveness.

The initial layers of CNNs are responsible for feature extraction, whereas the filters

that are included in these levels are responsible for independently identifying edges,

shapes, and textures. The design of these layers, which includes aspects like number,

size, and stride, has a significant impact on the degree to which the network is sensitive

to textual components [1].

In the realm of sequential data processing, RNNs and their more advanced equiv-

alents, LSTMs, perform exceptionally well. Their capacity to parse lists of text or prop-

erties in a certain order is one of their capabilities. Because it helps computers compre-

hend the sequence of letters and the semantic meaning of words contained inside lines,

proficiency in this ability is especially helpful for word recognition [2]. During the

implementation phase, the conceptual design is transformed into a functional model

using programming techniques. Python modules like Pandas, which is used for data

administration, and Matplotlib, which is used for visualization, are crucial for the early

investigation of datasets. Both OpenCV and PIL are powerful libraries that may be

used for image loading and preprocessing tasks when dealing with picture data. To

properly apply pretreatment operations, it is vital to have a complete understanding of

the techniques involved in picture transformation. OpenCV and other libraries have

comprehensive capabilities for transforming images, which include scaling, filtering,

and thresholding, among other possible transformations. NumPy, on the other hand,

may be utilized for operations that are effective when applied to image arrays. PyTorch

and TensorFlow are the two libraries that are considered to be the most effective mod-

293

els for neural networks. These frameworks enable the stacking of CNN and RNN lay-

ers, which enables the building of complicated model architectures. They do this by

providing an intuitive application programming interface (API). The Keras application

programming interface (API) of TensorFlow, for example, makes the creation of each

layer, activation function, and connections between layers simpler [9]. The process of

training a model requires a significant amount of computer power and involves adjust-

ing the weights of the network depending on the disparity between its predictions and

the actual outputs. To complete this procedure, you will need to choose an appropriate

loss function (for example, categorical cross-entropy for multi-class classification) and

an optimizer (for example, Adam or SGD). When it comes to monitoring the training

process, many tools, such as TensorFlow's TensorBoard, might prove to be quite use-

ful. These tools allow for the visualization of parameters such as loss and accuracy.

Figure 2 – CNN for Text Recognition [10]

A comprehensive evaluation approach includes both quantitative metrics and

qualitative assessments to guarantee the model's effectiveness across diverse circum-

stances. The concept of accuracy, although serving as a broad measure of performance,

can be deceptive, particularly when dealing with imbalanced datasets. These measures

offer a more detailed perspective on the performance of the model, emphasizing its

capacity to accurately detect and avoid overlooking pertinent events. Provides a valu-

able understanding of the model's mistake patterns, which is essential for creating in-

cremental enhancements.

Conclusion

The process of developing a word recognition system using Python demonstrates

how creativity and technology can work together. This piece talked about the many

steps that go into making a system. Art and science have both had an impact on the

294

creation of datasets, which we use to improve our raw materials and build neural net-

work models for word recognition. Python's machine learning catalytic function is

shown by using theory models in code. By training these models, we saw that machine

learning needs to be evaluated, learned, and fixed. Evaluation tools show both success

and potential problems. The high marks for accuracy, precision, recall, and F1 in our

technology and word recognition systems show that they can make apps better. Both

machine learning and AI are always changing. The new goals include making the

model smarter about writing styles, language nuances, and the bigger picture. When

word recognition algorithms are built into more complex systems, they open up new

ways to learn and come up with ideas. The goal is to create a word recognition system

that blends human knowledge with machine understanding in a way that works well.

Improvements made to these systems make it easier for technology and natural lan-

guage processing to come together. This will make it easier for people to share new

information and knowledge and communicate clearly. Python, along with researchers

and writers, is making great strides in the area of word recognition, which helps people

understand written words in a variety of forms.

References

1. “What are Convolutional Neural Networks? | IBM.” Available:

https://www.ibm.com/topics/convolutional-neural-networks

2. “Understanding LSTM Networks -- colah’s blog.” Available: https://co-

lah.github.io/posts/2015-08-Understanding-LSTMs/

3. M. Bisht and R. Gupta, “Offline Handwritten Devanagari Word Recognition

Using CNN-RNN-CTC,” SN Computer Science, Dec. 13, 2022. Available:

https://link.springer.com/article/10.1007/s42979-022-01461-x

4. “Research Group on Computer Vision and Artificial Intelligence – Computer

Vision and Artificial Intelligence.” Available: https://fki.tic.heia-fr.ch/databases/iam-

handwriting-database

5. “COCO-Text V2.0.” Available: https://bgshih.github.io/cocotext/

6. S. Jaiswal, “What is Normalization in Machine Learning? A Comprehensive

Guide to Data Rescaling,” Jan. 04, 2024. Available: https://www.datacamp.com/tuto-

rial/normalization-in-machine-learning

7. M. Patel, “The Complete Guide to Image Preprocessing Techniques in Py-

thon,” Medium, Oct. 23, 2023. Available: https://medium.com/@maahip1304/the-

complete-guide-to-image-preprocessing-techniques-in-python-dca30804550c

295

8. A. Murzova and A. Murzova, “Otsu’s Thresholding Technique | LearnO-

penCV,” LearnOpenCV – Learn OpenCV, PyTorch, Keras, Tensorflow with code, &

tutorials, May 05, 2021. Available: https://learnopencv.com/otsu-thresholding-with-

opencv/.

9. H. Scheidl, “Build a Handwritten Text Recognition System using Tensor-

Flow,” Medium, May 22, 2023. Available: https://towardsdatascience.com/build-a-

handwritten-text-recognition-system-using-tensorflow-2326a3487cd5

10. N. S. Gill, “Convolutional Recurrent Neural Network For Text Recognition,”

XenonStack, May 03, 2023. Available: https://www.xenonstack.com/insights/crnn-for-

text-recognition

Список литературы

1. “What are Convolutional Neural Networks? | IBM.” Available:

https://www.ibm.com/topics/convolutional-neural-networks

2. “Understanding LSTM Networks -- colah’s blog.”. Available: https://co-

lah.github.io/posts/2015-08-Understanding-LSTMs/

3. M. Bisht and R. Gupta, “Offline Handwritten Devanagari Word Recognition

Using CNN-RNN-CTC,” SN Computer Science, Dec. 13, 2022. Available:

https://link.springer.com/article/10.1007/s42979-022-01461-x.

4. “Research Group on Computer Vision and Artificial Intelligence — Computer

Vision and Artificial Intelligence.” Available: https://fki.tic.heia-fr.ch/databases/iam-

handwriting-database

5. “COCO-Text V2.0.” Available: https://bgshih.github.io/cocotext/

6. S. Jaiswal, “What is Normalization in Machine Learning? A Comprehensive

Guide to Data Rescaling,” Jan. 04, 2024. Available: https://www.datacamp.com/tuto-

rial/normalization-in-machine-learning

7. M. Patel, “The Complete Guide to Image Preprocessing Techniques in Py-

thon,” Medium, Oct. 23, 2023. Available: https://medium.com/@maahip1304/the-

complete-guide-to-image-preprocessing-techniques-in-python-dca30804550c

8. A. Murzova and A. Murzova, “Otsu’s Thresholding Technique | LearnO-

penCV,” LearnOpenCV – Learn OpenCV, PyTorch, Keras, Tensorflow with code, &

tutorials, May 05, 2021. Available: https://learnopencv.com/otsu-thresholding-with-

opencv/.

296

9. H. Scheidl, “Build a Handwritten Text Recognition System using Tensor-

Flow,” Medium, May 22, 2023. [Online]. Available: https://towardsdatasci-

ence.com/build-a-handwritten-text-recognition-system-using-tensorflow-

2326a3487cd5

10. N. S. Gill, “Convolutional Recurrent Neural Network For Text Recognition,”

XenonStack, May 03, 2023. Available: https://www.xenonstack.com/insights/crnn-for-

text-recognition.

