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Аннотация. В статье рассматриваются ключевые проблемы, возникающие 

при внедрении искусственного интеллекта (ИИ) в различные сферы жизни. 

Основное внимание уделено этическим, юридическим, социальным и 

экономическим последствиям использования ИИ, а также его влиянию на рынок 

труда и безопасность данных. Автор анализирует последствия автоматизации, 

проблемы с прозрачностью алгоритмов, а также необходимость разработки 

международных стандартов и этических норм для безопасного внедрения 

технологий ИИ. 
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Abstract. The article discusses the key issues arising from the widespread 

implementation of artificial intelligence (AI) in various spheres of life. The focus is on 

the ethical, legal, social, and economic consequences of AI usage, as well as its impact 

on the labor market and data security. The author analyzes the consequences of 

automation, transparency issues in algorithms, and the need for the development of 

international standards and ethical norms for the safe integration of AI technologies. 

Ключевые слова: искусственный интеллект, этика, рынок труда, 

автоматизация, безопасность данных, автономные автомобили. 

Keywords: artificial Intelligence, ethics, labor market, automation, data 

security, autonomous vehicles. 

 

В последние десятилетия искусственный интеллект (ИИ) стал одним из 

самых обсуждаемых и перспективных направлений технологического прогресса. 

От автоматизации простых задач до создания сложных систем, способных 

принимать решения, ИИ стремительно внедряется в различные сферы 

человеческой деятельности, включая медицину, транспорт, финансы, 

производство и даже искусство. В некоторых случаях ИИ может значительно 

повысить эффективность и качество работы, в других – вызвать проблемы, 

которые требуют тщательного анализа и предсказания последствий [2].  

Одной из самых значимых проблем является этическое, социальное и 

экономическое воздействие широкого внедрения ИИ. Использование таких 

технологий ставит перед обществом новые вызовы, включая вопросы 

ответственности за решения, принимаемые алгоритмами, потенциальную угрозу 

утраты рабочих мест, изменение рыночных структур и усиление социального 

неравенства. Одновременно с этим, не менее важной остается угроза 

безопасности: ИИ может стать объектом кибератак, а его применение в военных 

целях может привести к непредсказуемым последствиям для глобальной 

безопасности. В этих условиях важным становится поиск разумного баланса 

между инновациями и рисками, что требует разработки эффективных правовых 
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норм и этических стандартов. В данном контексте следует учитывать не только 

возможности, которые открывает искусственный интеллект, но и те сложности, 

с которыми неизбежно столкнётся общество при его интеграции в повседневную 

жизнь. Введение ИИ в различные области жизни требует внимательного 

подхода, сбалансированного регулирования и постоянного мониторинга его 

воздействия на общество, экономику и безопасность. Для успешного и 

безопасного внедрения ИИ необходимо обеспечение эффективного контроля и 

мониторинга. 

1. Этические и моральные проблемы 

Одной из важнейших этических проблем ИИ является принятие решений 

машинами в тех сферах, где они могут затронуть жизни людей. ИИ уже 

используется для принятия решений в таких областях, как: медицина и сфере 

финансовых услуг. Например: - ИИ может диагностировать заболевания, 

выбирать методы лечения и даже выполнять операции. Важно, чтобы такие 

решения были точными и обоснованными. 

Проблема заключается в том, что многие алгоритмы ИИ могут быть 

"черными ящиками", то есть мы не всегда понимаем, как именно они принимают 

решения. Это вызывает вопросы о прозрачности: нужно ли нам понимать, как 

работает ИИ, чтобы доверять его решениям? И кто несет ответственность, если 

решение окажется ошибочным или несправедливым? 

Тема внедрения искусственного интеллекта в повседневную жизнь, в том 

числе через игрушки и автомобили, открывает множество новых возможностей 

и одновременно порождает серьезные вопросы, требующие внимательного 

анализа и регулирования. 

Современные технологии ИИ включают автономные системы, такие как 

беспилотные автомобили, дроны и роботы, которые могут действовать без 

вмешательства человека. Например, автономный автомобиль, столкнувшись с 

ситуацией, где необходимо принять решение (например, кому наносить ущерб 

при неизбежной аварии), должен сам решить, как поступить. 
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Автономные автомобили, оснащенные искусственным интеллектом, 

обещают революционизировать транспортную отрасль. Эти машины смогут 

точно рассчитывать маршрут, выбирать оптимальную скорость и даже 

предсказывать возможные аварийные ситуации. Однако внедрение беспилотных 

транспортных средств также сопровождается рядом вопросов, особенно в 

области защиты персональных данных. 

Автономные автомобили, взаимодействуя с различными 

инфраструктурами и сервисами, будут собирать огромные объемы данных о 

местоположении пользователей, их маршрутах и предпочтениях. Эти данные 

могут быть использованы для коммерческих целей, например, для построения 

маршрутов с учетом точек интереса, которые платят за рекламные места. Важно, 

чтобы владельцы автомобилей имели контроль над своими данными и могли 

управлять их использованием.  

Кроме того, массовое внедрение беспилотных автомобилей неизбежно 

приведет к сокращению рабочих мест в автомобильной отрасли, особенно среди 

водителей грузовиков и таксистов. Прогнозы указывают, что до 25 тыс. 

водителей грузовиков могут потерять работу каждую неделю в связи с 

автоматизацией перевозок. Это потребует пересмотра подходов к обучению и 

переквалификации работников, а также разработки мер поддержки для тех, кто 

окажется в группе риска. С другой стороны, автономные автомобили имеют 

огромный потенциал в плане безопасности и экологии. Благодаря более точному 

управлению, они могут значительно снизить количество дорожно-транспортных 

происшествий, в том числе смертельных. Кроме того, автономные автомобили 

могут быть более эффективными с точки зрения энергопотребления и 

использования ресурсов, что может способствовать снижению выбросов 

углекислого газа и других загрязнителей в атмосферу. 

С развитием ИИ появляется угроза его использования для манипуляции 

мнением и поведением людей. Например, с помощью ИИ можно создавать 

фальшивые новости (fake news) или применять таргетированную рекламу, 



9 

которая может влиять на выборы, потребительские предпочтения или даже на 

общественное мнение. 

2. Влияние на рынок труда 

Одним из наиболее заметных последствий внедрения ИИ является 

автоматизация. Роботы и алгоритмы могут выполнять рутинные, монотонные 

задачи быстрее и точнее, чем люди. Это приводит к значительному сокращению 

рабочих мест в ряде отраслей. Примеры: 

• Производственные и складские работы: ИИ и роботы уже заменяют людей в 

таких сферах, как производство, логистика и управление складами. Это связано 

с более высокой производительностью роботов, которые могут работать без 

перерывов и ошибок. 

• Транспорт: Автономные транспортные средства (например, беспилотные 

автомобили и грузовики) могут уменьшить потребность в водителях, водителях 

такси и курьерах. 

• Финансовый сектор: ИИ помогает автоматизировать многие процессы в 

банках, таких как анализ кредитоспособности, обслуживание клиентов через чат-

боты и автоматическое принятие решений, что может снизить потребность в 

банковских работниках. 

Внедрение ИИ в рабочие процессы, безусловно, приведет к снижению 

потребности в некоторых видах труда, что может вызвать рост безработицы в 

определенных секторах. Это особенно актуально для работников, чьи профессии 

связаны с рутинными и повторяющимися задачами [1].  Например: 

• Кассовые работники: С развитием самообслуживания и автоматических касс 

в супермаркетах исчезает необходимость в людях на этих позициях. 

• Работники в области обслуживания: например, в ресторанной индустрии 

роботизированные системы могут заменить официантов, а в гостиничном 

бизнесе — работников рецепции. 
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3. Юридические и правовые проблемы 

Интеграция ИИ в различные сферы жизни требует пересмотра 

существующих правовых норм и создания новых законов, которые будут 

учитывать особенности использования ИИ. 

4. Технические проблемы и риски 

Внедрение ИИ сопряжено с множеством технических трудностей и 

рисков, которые могут ограничивать его развитие и использование. 

Надежность и безопасность. ИИ-системы должны быть надежными и 

безопасными, чтобы избежать сбоев, ошибок и уязвимостей. Поскольку ИИ 

может принимать автономные решения, сбои в работе таких систем могут 

привести к катастрофическим последствиям, например, в транспорте или 

энергетике. 

Отсутствие прозрачности. Современные ИИ-системы, в частности 

алгоритмы глубокого обучения, являются черными ящиками — их решения 

сложно объяснить и интерпретировать. Это вызывает опасения по поводу того, 

как принимаются решения и почему система поступает определенным образом. 

Развитие ИИ без этических ограничений. Технологии ИИ развиваются 

гораздо быстрее, чем регулирующие их законы и моральные нормы. Без 

правильного контроля и этических стандартов ИИ может быть использован во 

вред, например, в виде манипуляций с массовыми информационными потоками 

или в сфере кибербезопасности [2]. 

5. Экономические и социальные проблемы 

Проблемы с экономическим распределением. Внедрение ИИ может 

повлиять на экономическое распределение в глобальном масштабе. Страны и 

компании, имеющие доступ к передовым технологиям, могут получить 

конкурентное преимущество, что сделает их доминирующими в мировой 

экономике. Это усилит разрыв между развитыми и развивающимися странами. 

Социальные последствия. Массовая автоматизация и внедрение ИИ могут 

вызвать значительные изменения в социальной структуре. Например, в странах 
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с высоким уровнем безработицы из-за автоматизации могут возникнуть 

протесты, социальное недовольство и даже массовые волнения [1]. 

В ходе обсуждения различных аспектов, связанных с проблемами 

искусственного интеллекта (ИИ), можно прийти к выводу, что развитие этой 

технологии несет с собой как большие возможности, так и ответственность. ИИ 

может значительно улучшить качество жизни, повысить эффективность работы 

в различных сферах и помочь решать комплексные задачи, но одновременно 

порождает серию проблем, которые требуют серьезного внимания. 

ИИ должен служить на благо человека, не усиливая существующие 

проблемы, нужно его разработать так, чтобы он способствовал решению 

актуальных задач человечества. 
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Аннотация. В статье рассмотрен вопрос использования программных 

продуктов для анализа и визуализации отчетных данных, полученных с бортовых 

компьютеров многооперационных лесных машин. Предложена программа, 

позволяющая оценить статистические характеристики основных размерных 
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параметров заготовленной древесины, визуализировать данные о диаметрах и 

процентном соотношении сортиментов по породам заготовленных сортиментов, 

визуализировать схемы раскряжевки каждого заготовленного дерева. 

Abstract. In the article considers the issue of using software products for the 

analysis and visualization of reporting data obtained from on-board computers of 

multi-functional forest machines. A program is proposed that allows one to evaluate 

the statistical characteristics of the main dimensional parameters of harvested timber, 

visualize data on diameters and percentage ratios of assortments by species of 

harvested assortments, and visualize cross-cutting schemes for each harvested tree. 

Ключевые слова: программа, древесина, сортимент, заготовка, 

многооперационная лесная машина, статистические характеристики. 

Keywords: program, timber, assortment, procurement, multi-operational forest 

machine, statistical characteristics. 

 

В России основная часть древесины заготавливается в сортиментах по 

скандинавской технологии с применением многооперационных лесных машин, 

оснащенных программным обеспечением для контроля объема и размерно-

качественных характеристик заготовленной древесины, а также иных 

технических параметров функционирования машин [1]. 

Вопрос своевременного контроля размерно-качественных характеристик 

заготовленной древесины, на основе которого можно оперативно корректировать 

работу лесозаготовительной техники, является актуальным, а его решение 

позволяет повысить эффективность лесозаготовки с уменьшением издержек 

производства [2]. 

Производители многооперационных лесных машин снабжают их 

программными продуктами собственной разработки. Отечественное 

программного обеспечение, которое позволяло бы оперативно анализировать 

размерные и качественные параметры заготовленной древесины, на рынке не 

представлено.  
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Для анализа и визуализации отчётных данных, полученных с бортовых 

систем валочно-сучкорезно-раскряжевочных машин, создана программа, которая 

может использоваться как приложение для сотрудников лесозаготовительных 

предприятий [3]. Программа позволяет производить систематизацию данных по 

отчетным файлам, полученных с бортовых систем валочно-сучкорезно-

раскряжевочных машин и визуализировать их. 

Программа написана на языке Python (версия – 3,9) с использованием 

следующих библиотек: 

- Numpy для работы с многомерными массивами и матрицами; 

- Matplotlib для визуализации данных двумерной графикой; 

- PyQT5 для создания графических интерфейсов; 

- Re для работы с регулярными выражениями; 

- Pandas для обработки и анализа данных. 

Исходные данные загружаются из отчетных файлов бортовых компьютеров 

многооперационных лесных машин (рис. 1). 

 

Рисунок 1 – Отчетные данные, экспортированные из бортового компьютера 

многооперационной лесной машины 
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Программа обрабатывает файлы отчетных данных и позволяет решить 

следующие задачи: 

- визуализировать данные о диаметрах по каждому виду сортиментов в форме 

гистограммы; 

- визуализировать процентное соотношение сортиментов по породам с 

использованием круговой диаграммы; 

- визуализировать схемы раскряжевки каждого заготовленного дерева; 

- рассчитать статистические показатели диаметров, длин и объемов 

заготовленных сортиментов; 

- визуализировать данные о среднем сбеге деревьев по породам.  

Программа имеет несколько рабочих вкладок. При выборе вкладки 

«Диаметры» появляется выпадающий список сортиментов. После выбора 

сортимента происходит генерация столбчатой диаграммы, с помощью которой 

можно изучить долю диаметрических групп (группировка происходит по 20 мм) 

от общего объема соответствующего сортимента. На рис. 2 приведен пример 

распределения диаметров осинового баланса. Как можно заметить, 

распределение визуально близко к распределению Гаусса-Лапласа (нормальному 

распределению).  

 

Рисунок 2 – Пример распределения диаметров заготовленных сортиментов 
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При выборе вкладки «Раскряжевки» появляется текстовое поле, в которое 

пользователю необходимо ввести номер заготовленного многооперационной 

машиной дерева. После нажатия кнопки «Выбрать» происходит визуализация 

схемы раскроя соответствующего дерева, или хлыста (рис. 3). Красной 

пунктирной линией отмечены места распила, сверху указан зафиксированный 

диаметр в этом месте в миллиметрах. В центре каждого сортимента указана его 

длина в сантиметрах. 

 

Рисунок 3 – Пример визуализации схемы раскроя хлыста 

 

Дополнительной функцией является определение диаметра в любой точке 

хлыста (на рис. 3 это 430 мм). Расчет диаметра в определенной точке 

рассчитывается с помощью функции в библиотеке NumPy, которая выполняет 

одномерную линейную интерполяцию для набора заданных данных точек. Она 

оценивает значение функции в промежуточных точках на основе известных 

дискретных значений. По причине отсутствия в отчетных данных информации о 

диаметре ствола в месте первого распила, это значение рассчитывается для 

каждого ствола с учетом его среднего сбега и длины первого сортимента (на рис. 

3 это значение 437 мм). 
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При выборе вкладки «Породы» появляется выпадающий список пород. 

После выбора сортимента необходимо нажать кнопку «Выбрать» и генерируется 

круговая диаграмма, с помощью которой можно изучить долю заготовленных 

сортиментов конкретных пород (рис. 4).  

 

Рисунок 4 – Пример отображения соотношения заготовленной древесины по 

породам 

 

Во вкладке «Статистика» отображаются рассчитанные статистические 

показатели по длинам, диаметрам и объемам заготовленных сортиментов – 

среднее значение, стандартное среднеквадратическое отклонение, дисперсия, 

коэффициент вариации, полное поле рассеивания, ошибка среднего 

арифметического, средняя квадратическая ошибка, показатель точности, оценка 

достоверности статистических характеристик, максимальное и минимальное 

значение, значение асимметрии и эксцесса. На рис. 5 приведен пример оценки 

статистических характеристик для трех показателей – по длинам, по объемам и 

по диаметрам заготовленных сортиментов. 

 



18 

 

Рисунок 5 – Пример расчета статистических характеристик 

 

К примеру, изучив данные рис. 5, можно заметить, что длина 

заготовленного елового пиловочника варьируется от 412 до 416 см, а средняя 

длина составляет 413 см. Можно сделать вывод, что припуск составляет 3…4% 

от номинальной длины (4 м), что значительно превышает значения по ГОСТ 

9463-88.  

Также можно заметить, что коэффициент вариации по всем 

характеристикам меньше 30%, поэтому статистическая совокупность считается 

однородной. Это означает, что большинство вариант находится недалеко от 

средней, и найденное значение достоверно характеризует центральную 

тенденцию совокупности.  

Таким образом, представленная программа позволяет упростить процесс 

анализа отчетных данных с бортовых систем многооперационных лесных машин 

и визуализировать полученные данные в удобном виде. 
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Аннотация. В статье представлена математическая модель для расчета 

деформации объектов сетевой структуры в результате точечного воздействия на 

них внешней силы. 

Abstract. The article presents a mathematical model for calculating the 

deformation of the network structure of facilities as a result of the point impact of 

external forces on it. 

Ключевые слова: геометрический граф, дифференциальные уравнения, 

математическое моделирование, сетевая техническая система, функция Грина. 

Keywords: geometric graph, Green's function, network technical system, 

differential equations, mathematical modeling. 

 

В последние годы наблюдается значительный рост использования 

беспилотных летательных аппаратов. Полеты БПЛА фиксируются не только на 

линии боевого соприкосновения, но и в Белгородской, Брянской, Курской, 

Воронежской, Московской областях. На данный момент существует много 

способов борьбы с дронами, но одни из самых простых средств — это средства 

физической защиты. Защитные сетки способны эффективно противостоять 

угрозам, исходящим от беспилотников. Это простое решение способное 

защитить людей и технику в последнее время становится необходимостью. 

При установке защитной сетки следует учесть, что ее деформация при 

прогибе в результате попадания в нее постороннего предмета (дрона), должна 

быть больше расстояния до поверхности охраняемых объектов. Для расчета 

возможного прогиба сетки в качестве математической модели можно 

рассматривать систему струн с закрепленными концами. 

В статье рассматривается математическое моделирование задачи о 

деформации защитной сети от дронов системами дифференциальных уравнений 

на геометрических графах, проводится исследование построенной однородной 

краевой задачи, устанавливаются критерии невырожденности неоднородных 

задач с постоянными и переменными коэффициентами,  строятся функции Грина 
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для представления решений задач в интегральной форме, производится оценка 

величины деформации сети в результате попадания в нее дрона с учетом силы 

удара и места попадания. 

Рассмотрим сеть  , состоящую из произвольного числа ребер 
1

n

i

i

R 
=

= .  

Обозначим новую форму сети в результате ее деформации через функцию 

( )u x  . Множество внутренних вершин графа обозначим через ( )J  , а 

множество граничных вершин  . Множество ребер, примыкающих к общей 

внутренней вершине обозначим через ( )( ),R a a J  , тогда всю систему из 

произвольного числа струн обозначим ( )R J =    и назовем геометрическим 

графом в 
3 [1].  

Если на  1 2,a a   ввести натуральную параметризацию ( )x t= , где 

1 2 1 2 1 2 1( ) ( ) / , (0, )t a t a a a a t a a = + − −  − , то  1 2,a a  оказывается обычным 

отрезком из  . Тогда форма струны ( )( )u t  в результате деформации станет 

обычной функцией на отрезке. Естественно предполагать, что для нее будут 

существовать производные первого ( )( )
d
u t

dt
  и высших порядков 

( )( ) ( ) ( )
k

k

k

d
u x u t

dt
= . А на концах интервала ( )1 2,a a =  будут определены 

односторонние производные по направлению 
( ) ( 0)k

iu a + . 

Из физического смысла задачи следует, что плотность внешней силы, 

вызывающей деформацию ( ) :f   →  , а эластичности струн непрерывны и 

( ) 0,q x x   . Будем предполагать, что смещение всех точек системы от 

положения равновесия происходит в направлении вектора действия внешней 

силы. 

В основе построения краевой задачи лежит вариационный принцип 

минимизации энергии [1,2]. 
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Пусть потенциальная энергия системы определяется функционалом 

2 2

1

( )
2 2

i

n
i

i i i

i

u u
P u fu q dx f u q dx

=

    
= − = −   

   
  , тогда для  ( )2( )u x C  ,   

удовлетворяющих условиям жесткого закрепления на границе 

  ( ) 0,u a a=   , (1) 

условиям непрерывности 

  
( )( ),

( 0) 0
R a a J

u a
  

+ = , (2) 

стационарное значение ( )u   функционала  ( )P u  удовлетворяет условиям 

  
( )( ),

( 0) 0
R a a J

q u a 
  

 + =   (3) 

и уравнениям 

  ( ) , 1,i i iq u f i n


− = = . (4) 

Для неоднородной задачи (1) – (4) доказано, что соответствующая ей 

однородная задача имеет только тривиальное решение. 

Для частных случаев были получены критерии невырожденности.  

Например,  

если ( )1 2, , ( ) 1a a q x =  , то задача 

  
1( ) 0u a = ,

2( ) 0u a = , (5) 

  u f− =  (6) 

невырождена при  ( )1 2 0a a = −  . 

Если ( )1 2, , ( ) , , 0
b

a a q x kx b x k
k

 
 = = +  −  

 
, то задача  

  
1( ) 0u a = ,

2( ) 0u a = , (7) 

  ( )( )kx b u f− + =  (8) 

однозначно разрешима при условии  1

2

1
ln 0
ka b

k ka b

+
 = 

+
. 



24 

Если ( )1 2

1
, , ( ) , , 0

b
a a q x x k

kx b k

 
 = =  −  

+  
, то задача 

  
1( ) 0u a = ,

2( ) 0u a = , (9) 

  
u

f
kx b

 
− = 

+ 
 (10) 

невырождена при  ( ) ( )1 2 1 2 0
2

k
a a a a b

 
 = − + +  

 
. 

Для невырожденной задачи (1) – (4) при любой ( )( )f x C   и ( )2( )u x C   

решение может быть представлено в виде: 

  ( ) ( , ) ( )u x G x s f s ds


=  ,  (11) 

где ( , )G x s  - функция влияния, а ( )f s  - плотность силы удара дрона в точку s

.  

Функция Грина ( , )G x s  для краевой задачи второго порядка на отрезке 

можно построить по формуле: 

 

  ( ) ( ) ( )

( ) ( ) ( )

1 2

1 1 1 1 2

2 2 1 2 2

( , ) ( ) ( )
1

( , ) ( , )

( , )

H x s x x

G x s l H s l l

l H s l l

 

 

 

= 




,  (12) 

где  
2

1
( )i

i
x

=

 - фундаментальная система решений однородного уравнения,  

  

1 2

1 1 2

1 22

1 2

( ) ( )

0, ; ( ) ( )
( , ) ( , )

( ) ( )( , ), ,

( ) ( )

s s

a x s x x
H x s K x s

s sK x s s x a

s s

 

 

 

 

 
= =

 


  (13) 
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Например, для задачи (5) – (6) функция Грина ( , )G x s  имеет вид:  

  

( )( )

( )( )

2 1

1

1 2

2 1

2

1 2

, ;

( , )

, .

a s x a
a x s

a a
G x s

a x s a
x s a

a a

− −
 

−
= 

− −  
 −

  (14) 

Из свойств определенного интеграла имеет место оценка: 

  ( ) ( , ) ( ) ( , ) ( )u x G x s f s ds G x s f s ds
 

=   ,  (15) 

Тогда для оценки решения задачи (5) – (6) справедливо неравенство [3]: 

  
2 2 2

1 2 1 2

1 1 1

( ) ( , ) ( ) max ( , ) ( ) max ( , ) ( )

a a a

a x a a x s a
a a a

u x G x s f s ds G x s f s ds G x s f s ds
   = 

  =   , 

 (16) 

Следовательно, расстояние до охраняемого объекта h  должно быть 

больше чем 

  
( )( ) 2

1 2

1

2 1

1 2

max ( )

a

a x s a
a

a s s a
f s ds

a a = 

− −

−  . (17) 

Так, если плотность внешней силы удара ( ) 1f x  ,
1 1a = , 

2 10a =  то h  

должно быть больше чем 
2

1

10

1 2

1 2 1

11 11
( ) 5,5

2 18 2

a

a

a a
f s ds ds

a a

+
= = 

−   , а если ( )f x x= , 

1 1a = , 
1 10a = , то h  должно быть больше чем 

2

1

1010 2

1 2

1 2 1 1

11 11 11 99 121
( ) 30,25

2 18 18 2 18 2 4

a

a

a a s
f s ds sds

a a

+
= = =  = 

−   .  

Оценка (17) позволяет быстро рассчитать расстояние, на котором должна 

быть установлена защитная сетка в зависимости от силы удара БПЛА. 
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Правильный расчет характеристик защитной сетки является важным 

этапом в процессе ее разработки и установки. Это позволит не только повысить 

уровень защиты военной техники, но и важных объектов гражданской 

инфраструктуры от атак беспилотных летательных аппаратов. 
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В резерве трех автотранспортных предприятий 1 2,a a  и 3a  имеется 20, 30 

и 50 самосвалов соответственно. Есть два пункта погрузки древесины 1b  и 2b , 

которым требуется 35 и 45 автомобилей. Стоимость перегона (доставки) одного 

самосвала от каждого автотранспортного предприятия в пункты погрузки задана 

платежной матрицей 

10 20

20 30

10 40

С

 
 

=
 
 
 

. 

Требуется составить оптимальный по стоимости план доставки 

автомобилей при дополнительных ограничениях:  

1) количество самосвалов от 2-го предприятия во 2-й пункт погрузки 

должно быть не менее 10,  

2) количество самосвалов от 3-го предприятия в 1-й пункт погрузки 

должно быть не более 30. 

Для лучшего восприятия запишем условия нашей задачи в виде таблицы  

                                                                              Таблица 1 

 
jb                   

ia  

35 45 

20 
10 20 

30 
20 30 

50 
10 40 

 

Дополнительные условия: 1) 22 10x  ,   2) 31 30x    

Для выполнения первого ограничения 22 10x  , уменьшим «запасы», т.е. 

количество автомобилей, имеющихся у 2-го автопредприятия, и «запросы» в 

автомобилях, необходимых 2-му пункту погрузки на 10 единиц. После того, как 
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мы решим задачу, надо будет сделать обратный шаг и увеличить объем доставки  

22x  на 10 автомобилей.  

Для выполнения второго ограничения 31 30x  , вместо первого пункта 

погрузки (с запросом в 35 машин) введем двух других: один из них с номером 1 

будет иметь запрос в 30 машин, а другой с номером 3 – запрос в 5 35 30= −  

машин. Стоимости доставки машин в первом столбце останутся прежними. 

Стоимости доставки машин к 3-му (новому) пункту погрузки древесины будут 

те же, что и у 1-го пункта, кроме 33с , которая принимается равной М (сколь 

угодно большим числом). Так как 33с М=  – это самая большая стоимость 

доставки, то машины перевозить туда будет невыгодно, и в оптимальном 

решении соответствующая клетка окажется пустой. После того как мы найдем 

оптимальное решение, 3-й столбец (объемы доставок) надо будет добавить к 1-

му. 

Таким образом, с учетом ограничений получим новую таблицу 2: 

                                                                                                Таблица 2 

jb                  

ia  

30 35 5 

20 10 20 10 

20 20 30 20 

50 10 40 М 

 

Прежде чем решать полученную транспортную задачу обычным методом 

потенциалов, проверим выполнение условия баланса i j

i j

a b=  . 

20 20 50 90i

i

a = + + = ,       30 35 5 70j

j

b = + + = . 

Получили задачу с неправильным балансом. Для исправления баланса 

вводим 4-й фиктивный пункт погрузки с запросом в 90 70 20− =  машин и с 
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нулевыми стоимостями доставки. Составим начальный опорный план методом 

наименьшего элемента. 

                                                                                Таблица 3 

jb            

ia  

30 35 5 20  

 

20 

        10 

20 

20 

 –  

10 

– 

0 

– 

 

1 0и =  

 

20 

20 

– 

30 

15 

20 

5 

0 

– 

 

2 10и = −  

 

50 

10 

10 

40 

20 

М 

– 

0 

20 

 

3 0и =  

 1 10v =  
2 40v =  

3 30v =  
4 0v =   

 

Вычислим стоимость доставки автомобилей при этом опорном плане: 

1( ) 20 10 15 30 5 20 10 10 20 40 20 0 1650F X =  +  +  +  +  +  =  (ден. ед.) 

Проверим план на оптимальность методом потенциалов. Для 

«заполненных клеток» составляем уравнения 
i j iju v c+ = : 

1 1

2 2

2 3

3 1

3 2

3 4

10

30

20

10

40

0

u v

u v

u v

u v

u v

u v

+ =


+ =

 + =


+ =
 + =


+ =

 

1 0u = ,    (
1u выбрали сами, остальные переменные     

2 10u = − ,           находим «по цепочке») 

3 0u = , 

1 10v = , 

2 40v = , 

3 30v = , 

4 0v = . 

Для «пустых» клеток проверяем неравенства 
i j iju v c+  : 

1 2 20u v+            0 40 20+       не верно 

1 3 10u v+             0 30 10+        не верно 

1 4 0u v+               0 0 0+   
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2 1 20u v+            10 10 20− +   

2 4 0u v+              10 0 0− +   

3 3u v М+             0 30 М+   

Полученное решение не является оптимальным, так как неравенства не 

выполнены в двух клетках (1;2) и (1;3). 

Чтобы перейти к лучшему решению составим замкнутый цикл, который 

начинается в клетке (1;2) и меняет направление в клетках (1;1), (3;1), (3;2). В 

углах цикла расставляем знаки чередуя и начиная с + в клетке (1;2). Из клеток со 

знаком «–» выбираем наименьшую перевозку  
«–»

min 20; 20 20 = = . Сдвигаем это 

число по циклу в соответствии со знаком. Получаем второе опорное решение 
2X  

                                                                                     Таблица 4 

jb          

ia  

30 35 5 20  

 

20 

        10 

– 

20 

 20  

10 

– 

0 

– 

 

1 0и =  

 

20 

20 

– 

30 

15 

20 

5 

0 

– 

 

2 10и =  

 

50 

10 

30 

40 

0 

М 

– 

0 

20 

 

3 20и =  

 1 10v = −  
2 20v =  

3 10v =  
4 20v = −   

 

Так как при пересчете таблицы у нас обнулились перевозки в двух клетках 

вместо одной, то одну из них (например, клетку (3:2)) будем считать 

заполненной с перевозкой 32 0x = . 

Снова проверяем план на оптимальность методом потенциалов. Для 

«заполненных клеток» составляем уравнения 
i j iju v c+ =  и найденные 

iu  и 
jv  

записываем в Таблицу 4. Для «пустых» клеток проверяем неравенства 
i j iju v c+   
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и видим, что они все выполнены. Следовательно, полученное решение является 

оптимальным. 

Запишем оптимальное решение исходной задачи. Для этого увеличим 

объем доставки 
22x  от второго автотранспортного предприятия ко второму 

пункту погрузки древесины на 10 автомобилей и объединим объемы доставок 3-

го и 1-го пунктов погрузки. 

Получим:     2

0 20

5 25

30 0

оптX X

 
 

= =
 
 
 

. 

Вычислим стоимость доставки самосвалов от автопредприятий к пунктам 

погрузки древесины: 

2( ) 20 20 5 20 25 30 30 10 1550оптF F X= =  +  +  +  = . 
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К числу наиболее востребованных в автоматизации производственных 

процессов в промышленности, авиационной и космической отраслях, 

робототехнике и автомобилестроении, лесопромышленном комплексе, 

медицине, научных и социальных исследованиях относятся такие широко 

распространенные инструменты математического аппарата искусственного 

интеллекта (ИИ), как пропозициональная логика и нейронные сети, обладающие 

богатым спектром возможностей прикладного моделирования. 

Этим обуславливается тот факт, что данная проблематика является в 

настоящее время объектом научного интереса многих исследователей.  

В данной статье мы рассматриваем некоторые прикладные модели ИИ, в 

том числе нейронные сети, моделирующие психологические тесты и социально-

педагогические опросы. 

Одним из возможных приложений математического аппарата ИИ является 

моделирование анализа индивидуально-психологических свойств личности. В 

психологической практике часто используются когнитивные карты для 

исследования индифферентности личности на основе трех ее видов: 

интернальной, экстернальной и аккомодативной [2, 3]. Приведем показатели 
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значимости активационной функции интернальной индифферентности (см. 

Табл.1). 

Таблица 1. 

Весовые коэффициенты активационной функции нейрона, моделирующего 

интернальную индифферентность 

Варианты ответов 

Бихевиористические характеристики 

интернальной индифферентности 

𝑥1 𝑥2 𝑥3 

Логическая 

переменная  
Значение 

«Меня не 

особенно 

беспокоит то, 

что 

происходит 

сейчас в моей 

жизни» 

«У меня пока 

нет 

определенных 

целей и 

планов на 

будущее» 

«Я не 

вкладываю 

больших 

усилий в свои 

повседневные 

дела и 

обязанности» 

𝑦1 
Совершенно 

не согласен 
1 1 1 

𝑦2 Не согласен 2 2 2 

𝑦3 
Скорее не 

согласен 
3 3 3 

𝑦4(= ¬𝑦3) 
Скорее 

согласен 
4 4 4 

𝑦5(= ¬𝑦2) Согласен 5 5 5 

𝑦6(= ¬𝑦1) 
Совершенно 

согласен 
6 6 6 

 

Тогда база знаний пропозициональной логики, моделирующей 

интернальную индифферентность, будет включать следующие правила: 

(𝑦1[𝑥1] = 1)⋀(𝑦1[𝑥2] = 1)⋀(𝑦1[𝑥3] = 1) ⟹ 𝑆1 

(𝑦1[𝑥1] = 1)⋀(𝑦1[𝑥2] = 1)⋀(𝑦2[𝑥3] = 2) ⟹ 𝑆1 

(𝑦1[𝑥1] = 1)⋀(𝑦1[𝑥2] = 2)⋀(𝑦1[𝑥3] = 1) ⟹ 𝑆1 

(𝑦2[𝑥1] = 2)⋀(𝑦1[𝑥2] = 1)⋀(𝑦1[𝑥3] = 1) ⟹ 𝑆1 

где S1 = «низкий уровень интернальной индифферентности» [1]. 
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Другим прикладным вариантом применения инструментов ИИ является 

фильтрация данных, с помощью которого выявляются противоречия в 

обрабатываемых входных данных и отсекаются так называемые «невалидные» 

данные, содержащие нестыковки. Выполнение этого этапа обработки данных 

может успешно осуществляться с помощью таких методов ИИ как дерево 

решений и прямой логический вывод. 

Продемонстрируем вышесказанное примером взаимоисключающей 

информации в «невалидных» входных данных: «Температура воздуха 400»; 

«Недостаточный уровень жидкости в радиаторе»; «Завести двигатель 

автомобиля». Наблюдаемые противоречия являются основанием для 

квалификации таких входных данных как «невалидных». В работе [4] показано, 

что применение описанной методики валидации позволило авторам выявить 

21% «невалидных» входных данных. 

Схема нейронной сети, моделирующей процесс валидации данных и 

обобщающей дерево решений из [4], изображена на Рис. 1. 

 

 

Рис. 1. Модель нейронной сети (𝑥𝑛,𝑖– i-й нейрон n–го слоя) 
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Возможность применения математических инструментов ИИ в 

интеллектуальных системах принятия решений о допустимости 

сплошнолесосечных [5] рубок в лесотехнической отрасли показана на Рис.2. 

 

 

Рис. 2. Фрагмент дерева решений, моделирующего процесс принятия решений 

о допустимости сплошнолесосечных рубок  

 

Резюмируя вышесказанное, подчеркнем актуальность, широкие сферы 

применения и богатые возможности математического аппарата искусственного 

интеллекта и отметим, что необходимыми условиями достижения 

эффективности в использовании указанных инструментов для получения 

достоверных выходных данных являются валидность входных данных, 

эффективные функции активации и интегрированность математического 

аппарата искусственного интеллекта. 
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Аннотация. В статье рассматриваются переопределенные системы 

уравнений в частных производных – обобщенные системы Коши-Римана со 

многими переменными с комплексными периодическими коэффициентами. 

Найдена формула общего решения однородной системы. В двумерном случае 

получены формулы общего решения, а также ограниченных и периодических 

решений неоднородной системы. 

Abstract. The article considers overdetermined systems of partial differential 

equations – generalized Cauchy-Riemann systems with many variables with complex 

periodic coefficients. A formula for the general solution of a homogeneous system is 
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found. In the two-dimensional case, formulas for the general solution, as well as for 

bounded and periodic solutions of a non-homogeneous system, are obtained. 

Ключевые слова: переопределенная система, уравнение в частных 

производных, общее решение, ограниченные решения, периодические решения. 

Keywords: overdetermined systems, partial differential equations, general 

solution, bounded solution, periodic solution. 

 

В работе рассматривается переопределённая система комплексных 

уравнений в частных производных с 𝑛 независимыми переменными вида 

𝑤𝑧̅𝑗 + 𝑎𝑗𝑤 = 𝑓𝑗(𝑧),    𝑗 = 1, 𝑛̅̅ ̅̅ ̅, (1) 

где 𝑎𝑗 и 𝑓𝑗 − заданные функции переменной 𝑧, определённые во всем 𝐶𝑛 −n-

мерное комплексное евклидово пространство. 

Исследуем систему (1) в предположении, что 𝑎𝑗 и 𝑓𝑗 принадлежат 𝐶2𝜋 − 

пространство непрерывных в 𝐶𝑛 функций 𝑓(𝑧1, … , 𝑧𝑛), удовлетворяющих 

условиям двоякопериодичности [4]: 

𝑓(𝑧1, … , 𝑧𝑗 + ℎ𝑗 , … , 𝑧𝑛) = 𝑓(𝑧1, … , 𝑧𝑛), (2) 

здесь ℎ𝑗 ∈ {2𝜋, 2𝜋𝑖}.  

Необходимым и достаточным условием полной разрешимости системы (1) 

будут равенства [2]: 

  𝜕𝑧̅𝑘𝑎𝑗 = 𝜕𝑧̅𝑗𝑎𝑘 , (3) 

 𝜕𝑧̅𝑗𝑓𝑘 − 𝜕𝑧̅𝑘𝑎𝑗 + 𝑎𝑘𝑓𝑗 − 𝑎𝑗𝑓𝑘 = 0,    𝑗 ≠ 𝑘. (4) 

Введем следующие операторы в 𝐶2𝜋 [5]: 

𝑇𝑗𝑓 = 𝑓o
𝑗
𝑧𝑗̅ − 2𝑖∑𝑘−1𝑓𝑘

𝑗
𝑒𝑖(𝑘,𝑧𝑗)

𝑘≠0

, (5) 

где 𝑘 = 𝑘1 + 𝑖𝑘2 ∈ 𝑍
2 − целочисленная решетка в 𝐶1, (𝑘, 𝑧𝑗) = 𝑘1𝑥𝑗 + 𝑘2𝑦𝑗 ,

𝑓𝑘
𝑗
− коэффициенты Фурье функции 𝑓 по переменной 𝑧𝑗. А также верны 

следующие равенства: 
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(𝑇𝑗𝑓)𝑧̅𝑗
= 𝑓,      𝑇𝑗 (𝑓𝑧̅𝑗) = 𝑓 − 𝑓o

𝑗
. (6) 

Введем также операторы: 𝑆𝑗𝑓 = 𝑇𝑗𝑓 − 𝑓o
𝑗
𝑧𝑗̅ , 𝑗 = 1, 2. Очевидно, что  

𝑆𝑗𝑓 ∈ 𝐶2𝜋 . 

Для функций 𝑎𝑘 ∈ 𝐶2𝜋 определим следующие средние значения:  

𝑎𝑘,𝑗 = 𝛾𝑗 ∫𝑎𝑘(𝑧)𝑑𝜔𝑗 ,

𝐾𝑗

     1 ≤ 𝑗 ≤ 𝑛, (7) 

где 𝛾𝑗 = (2𝜋)
−2𝑗 , 𝑑𝜔𝑗 = 𝑑𝑧1⋯𝑑𝑧𝑗 .  Положим, что 𝑎𝑘,0 = 𝑎𝑘(𝑧). Среднее 

значение функции 𝑎𝑘 по переменной 𝑧𝑗 обозначим через [𝑎𝑘]𝑗 . Тогда получим  

[𝑎𝑘]1 = 𝑎𝑘,1. (8) 

Справедлива следующая  

Теорема 1. Пусть коэффициенты однородной системы 

соответствующей (1) принадлежат 𝐶2𝜋 и выполнены условия (3). Тогда общее 

решение этой системы имеет вид  

𝑤(𝑧) = 𝑒−Ω(𝑧)𝜑(𝑧), (9) 

где  

Ω(𝑧) =∑𝑇𝑗

𝑛

𝑗=1

𝑎𝑗,𝑗−1, (10) 

𝜑(𝑧) − произвольная аналитическая по 𝑧 функция. 

В системе (1) предположим, что 𝑛 = 2. Систему запишем в виде 

{
𝑤𝑧̅1 + 𝑎(𝑧1, 𝑧2)𝑤 = 𝑓(𝑧1, 𝑧2),

𝑤𝑧̅2 + 𝑏(𝑧1, 𝑧2)𝑤 = 𝑔(𝑧1, 𝑧2).
(11) 

Необходимые и достаточные условия полной разрешимости (3), (4) для 

данной системе выглядят так:  

𝑎𝑧̅2 = 𝑏𝑧̅1 , (12) 

−𝑎𝑔 + 𝑏𝑓 + 𝑓𝑧̅2 − 𝑔𝑧̅1 = 0. (13) 

Верна следующая теорема 
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Теорема 2. Пусть коэффициенты однородной системы (11) принадлежат 

𝐶2𝜋 и удовлетворяют условию (12). Тогда общее решение этой системы имеет 

вид  

𝑤(𝑧1, 𝑧2) = 𝑒
2𝑖𝐼𝑚(𝑎𝑜̅̅̅̅ 𝑧1+𝑏𝑜̅̅̅̅ 𝑧2)𝜔1(𝑧1, 𝑧2)𝜔2(𝑧2)𝛷(𝑧1, 𝑧2), (14) 

где 𝑎𝑜, 𝑏𝑜 − средние значения функций 𝑎, 𝑏 соответственно, 𝜔1 = 𝑒
−𝑆1𝑎, 𝜔2 =

𝑒−𝑆2𝑏𝑜
1
, 𝛷 − произвольная аналитическая по 𝑧1, 𝑧2 функция.  

Пусть 𝑤(𝑧1, 𝑧2) ограниченное во всем 𝐶2. Тогда решение однородной 

системы соответствующей (11), будет ограниченной в 𝐶2 и в силу теоремы 

Лиувилля Φ(𝑧1, 𝑧2) ≡ 𝑐, где 𝑐 − постоянная. Поэтому все ограниченные в 𝐶2 

решения однородной системы имеет вид  

𝑤(𝑧1, 𝑧2) = 𝑒
2𝑖𝐼𝑚(𝑎o̅̅ ̅̅ 𝑧1+𝑏o̅̅̅̅ 𝑧2)𝑤1(𝑧1, 𝑧2)𝑤2(𝑧2)𝑐, (15) 

причем все эти решения являются почти-периодическими. 
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Аннотация. В данной работе описывается частный случай семейства 

гильбертовых пространств. Операторы, отображающие эти пространства в себя, 

имею простое представление в виде суммы скалярного оператора и оператора, 

принадлежащего некоторому операторному идеалу. Ранее В.И. Овчинниковым 

была высказана гипотеза о связи строения операторов, действующих в 

интерполяционных семействах с «количеством» интерполяционных 

пространств. Пример, указанный в работе, подтверждает эту гипотезу. 
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Abstract. The paper describes a special case of a family of Hilbert spaces. The 

operators that map these spaces into themselves have a simple representation in the 

form of the sum of a scalar operator and the operator which belong to some operator 

ideal. Earlier, V.I. Ovchinnikov hypothesized that the structure of operators operating 

in interpolation families is related to the "number" of interpolation spaces. The example 

given in the paper confirms this hypothesis. 

Ключевые слова: гильбертово семейство, весовое пространство. 

Key words: Hilbert n-tuple, weight space. 

 

Рассмотрим гильбертову пару )}(),({ 2

1

2  llK −=  (см. [1]), где веса 

определены следующим образом 
j

j

22−= . Можно легко показать, что сумма 

пространств )2()2( 2

2

2

2

jj

ll −+  совпадает с пространством )2( 2

2

j

l − , а пересечение 

пространств )2()2( 2

2

2

2

jj

ll −  с пространством )2( 2

2

j

l  с равенством норма. 

Рассмотрим оператор умножения (мультипликатор) действующий по правилу:  

,:
22
llM →


              

jjj
   

Этот оператор отображает изометрично пространство 
2
l  (см.[2])  

Если предположить, что оператор A  принадлежит алгебре ограниченных 

операторов ))((
2
lB  , действующих в весовом пространстве, то можно сделать 

вывод, что оператор вида 

1−AMM  принадлежит алгебре )(
2
lB . Это, в свою 

очередь, эквивалентно тому, что матрицу этого оператора можно представить в 

виде 

=

+−

1,

22 )2(
jiij

a
ij

. Таким образом, действие оператора A  в  весовом пространтсве 

)(
2
l  накладывает на элементы ее матрицы следующие ограничения 

22
||||2|| 22

llij
Aa

ji

→

+−  . 

Рассуждая аналогично, действие оператора  A  в весовом пространстве )( 1

2

−l  

бкдет давать следующую оценку на элементы матрицы: 

22
||||2|| 22

llij
Aa

ji

→

−  . 
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Таким образом, если оператор A  действует в паре )}(),({
2

1

2
 llK −= , то 

элементы матричного представления этого оператора будут подчиняться 

следующим условиям (см. [3]): 

 
22

||||2|| |22|

llij
Aa

ij

→

−−   

Рассмотрим весовые пространства )(
2
ul  и )(

2
vl , в которых веса определены 

по правилам 

122

12 2
−

=−

n

nu , 
n

nu
22

2 2= , 
122

12 2
+−

+ =
n

nu , 
222

22 2
+−

+ =
n

nu  
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122

12 2
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− =
n

nv , 
n

nv
22

2 2−= , 
122

12 2
+

=+

n

nv , 
222

22 2
+

=+

n

nv  

Эти пространства также образуют гильбертову пару и в ней можно задать 

действие ограниченного оператора A . Рассуждая аналогично тому, как это 

сделано  для пары  K , легко найти условия, которые будут верны для элементов 

матрицы этого оператора.  

Пусть оператор A   действует ограниченно в пространствах )(
2
ul , )(

2
vl , 

)(),(
2

1

2
 ll −  .Тогда элементы матрицы этого линейного ограниченного 

оператора будут ограничены сверху величиной 

22
||||2|| 22

llij
Aa

ij

→

−−   

Выясним действие операторов 
u
A  и 

l
A  в пространствах )(),(

2

1

2
 ll − . Оператор 

u
A  представим в виде 

 


=

=
1k

ku
AA  

где 
k
A  операторы имеют матрицы вида 

=+ 1
)(
ikii

a , kN. Непосредственными 

вычислениями можно показать, что каждый оператор 
k
A  отображает )(2 l  в 

)( 1

2

−l , т.е. пространство суммы в  пространство пересечения. 

Оценим нормы операторов 
k
A  как отображение пространства 

2
l  в пространство 

)( 1

2

−l :  
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Следовательно, поскольку нормы операторов 
k
A  имеют указанные выше 

степенные оценки, оператор uA  образуют, по теореме Вейерштрасса,  абсолютно 

сходящийся ряд и является оператором, который ограниченно действует из 
2
l  в 

)( 1

2

−l . 

Нижнетреугольную часть оператора A  также можно представить в виде 

ряда  

 


=

=
1

~

k
kl
AA  

где k
A
~

 – операторы, имеющие матричное представление 

=+ 1
)(
ikii

a ,  с условиями на 

элементы матрицы  

22
||||2|| 22

llkii
Aa

kii

→

−−

+


+

. 

Аналогично предыдущим рассуждениям, можно показать, что оператор 
l
A  

действует из пространства )(2 l  в пространство 
2
l . 

Определим действие оператора A  во всех пространствах )(
2
ul , )(

2
vl , 

)(),(
2

1

2
 ll − . Введем в рассмотрение подпространство вида  
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Очевидно, что оно является ядром неограниченного в пространстве  
2
l  

функционала. Положим, что оператор A  действует  из подпространство N в себя. 

Тогда образом вектора 


=
=

1
}{
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x    будет вектор 
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и будет верно  
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Так как )2( 2

2

j

ly  то последний ряд абсолютно сходится и изменив порядок 

суммирования в последнем выражении, получим 
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 
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Последовательность 


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
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



11 ji
ij
a  является функционалом для 



=
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1
}{
jj

x   в 

пространстве )2( 2

2

j

l  и следовательно принадлежит двойственному пространству 

)2( 2

2

j

l − . Тогда  

 =


=1i
ij
a  

Таким образом, элементы матрицы A , стоящие на главной диагонали можно 

представить в виде  

 




−=
ji

ijjj
aa  . 

Из этих рассуждение легко следует, что оператор A  имеет представление 

TIA +=  , где T  –оператор, имеющий матрицу 


=1,
)(
jiij

t :  

 







=−



=





jia

jia

t

ji
ij

ij

ij ,

,

, 

Непосредственными вычислениями можно показать, что внескалярная 

часть этого оператора отображает сумму пространств в пересечение. 
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Аннотация. Проведен анализ снижения размерности исходных 

статистических данных с применением кластерного правила с группировкой 

независимых параметров для обеспечения расположения их среднего значения в 

группах по возрастанию. Это дало возможность сформулировать задачу 

отыскания коэффициентов линейного уравнения пространственной регрессии, 

которая решена путем проецирования значений зависимой величины на 

координатные плоскости с применением метода наименьших квадратов и 

целевой функции в виде суперпозиций квадратов отклонений. Проецирование 

одного из регрессионных уравнений формата 2-D на плоскость, параллельную 

оси значений зависимой переменной, позволило идентифицировать через 

параметрическое регрессионное уравнение прямой в пространстве. Приведен 

пример расчета. 

Abstract. The analysis of the reduction of the dimensionality of the initial 

statistical data was carried out using the cluster rule with grouping of independent 

parameters to ensure the arrangement of their average value in groups in ascending 

order. This made it possible to formulate the problem of finding the coefficients of the 

linear equation of spatial regression, which was solved by projecting the values of the 

dependent variable onto coordinate planes using the least squares method and the 

objective function in the form of superpositions of squared deviations. Projecting one 

of the regression equations of the 2-D format onto a plane parallel to the axis of the 

values of the dependent variable made it possible to identify a straight line in space 

through a parametric regression equation. An example of calculation is given. 

Ключевые слова: кластеризация данных, статистические массивы, метод 

наименьших квадратов, пространственная регрессия. 

Keywords: data clustering, statistical arrays, least squares method, spatial 

regression. 

 

Необходимость построения аналитических соотношений на поле 

неупорядоченных данных различной предметной направленности часто 
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возникает в практической реализации вспомогательных формализаций при 

генерации феноменологических моделей [1]. Особенно эта проблема трудно 

формализуется в многомерном случае, когда требуемая величина должна быть 

идентифицирована на различных метриках. В данном случае синтезируется 

построение системы разнородных параметров, определяющих некую 

наблюдаемую величину. Выбор реперной шкалы строится по принципу 

возрастания, имитирующей числовую дискретную ось. Другая шкала 

формируется за счет упорядоченных кластерных массивов с неубывающей 

мощностью и инвариантной параметрической характеристикой с применением 

метода пассивной стратегии [2]. 

При таком подходе создается упорядоченное поле, на котором 

однозначным образом определяется значение рассматриваемого зависимого 

параметра с построением для него, например, регрессивного соотношения 

технологией минимизации интегрального квадратичного отклонения [3]. 

Пусть после кластеризации исходные статистические данные 

представлены в табличном виде: 

 

zэ z1 … zi … zn 

xэ x1 … xi … xn 

yэ y1 … yi … yn 

Табл.1. Исходные данные. 

 

Будем рассматривать декомпозицию данных на координатные (oxy), (oxz), 

(oyz), считая систему координат oxyz ортогональной. Допустим линейную 

структуру регрессионных уравнений на соответствующих координатных 

плоскостях 

0 1
Ty a a x= + , 1 0 1

Tz b b x= + , 2 0 1
Tz c c y= + ,     (1) 

где 0a , 1a , 0b , 1b , 0c , 1c  - неизвестные параметры, подлежащие определнию. 
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Составим суперпозиционную целевую функцию  

( ) ( ) ( ) ( )
2 2 2

0 1 0 1 0 1 1 2

1

, , , , ,
n

э T э T э T
i i i i i i

i

a a b b c c y y z z z z
=

 
 = − + − + −

  
 ,  (2) 

которую минимизируем с помощью совокупности необходимых условий 

существования экстремума 

 
0 1 0 1 0 1

0
a a b b c c

     
= = = = = =

     
.     (3) 

Из (1) – (3) следует система линейных уравнений для определения 0a , 1a , 0b , 1b

, 0c , 1c : 

   0 1

1 1

n n
э

i i

i i

na x a y
= =

 
+ = 
 
  ;      (4) 

    0 1

1 1

n n
э

i i

i i

nb x b z
= =

 
+ = 
 
  ;      (5) 

    0 1

1 1

n n
э

i i

i i

nc y c z
= =

 
+ = 
 
  ;      (6) 

     2
0 1

1 1 1

n n n
э

i i i i

i i i

x a x a y x
= = =

   
+ =   

   
   ;      (7) 

     2
0 1

1 1 1

n n n
э

i i i i

i i i

x b x b z x
= = =

   
+ =   

   
   ;      (8) 

      2
0 1

1 1 1

n n n
э

i i i i

i i i

y c y c z y
= = =

   
+ =   

   
   . (9) 

 

Уравнение плоскости 

   1 00 0a x y z a− + +  − = ,             (10) 

которое параллельно оси oz пересекается с плоскостью, например,  

       1 00 0b x y z b− +  + − = ,             (11) 
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по прямой, у которой направляющий вектор определяется из соотношения (см. 

(10) и (11)) 

1 1 2 3

1

1 0

0 1

i j k

a p i p j p k

b

− = + +

−

,            (12) 

где , ,i j k  орты ортогональной системы координат oxyz. Если ( ) ( )0 0 0, ,M x y z  

принадлежит этой прямой, то регрессионное уравнение будет иметь следующий 

вид: 

      0 0 0

1 2 3

x x y y z z

p p p

− − −
= = .             (13) 

Введем параметр t следующим образом 

0

1

x x
t

p

−
= , 0

2

y y
t

p

−
= , 0

3

z z
t

p

−
= .            (14) 

Из первых двух соотношений (14) имеем 

0 1x x p t= + , 0 2y y p t= + , 

откуда  

0 1

0 2

x p tx

y y p t

+
=

+
 

и поэтому 

0 0

2 1

yx xy
t
xp yp

−
=

−
, 

что в итоге дает структуру регрессионного пространственного уравнения 

0 0
0 3

2 1

yx xy
z z p

xp yp

 −
= +  

− 
.             (15) 
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Аннотация. Природно-ресурсный потенциал, одним из главных 

компонентов которого являются лесные ресурсы, во многом определяет 

социально-экономическое положение государства. В статье авторы исследуют 

динамику развития лесного сектора Липецкой области, проводят анализ 
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статистических показателей данного кластера, выявляют особенности 

регионального комплекса. 

Abstract. The natural resource potential, one of the main components being 

timber resources, largely determines the socio-economic situation of the state. In the 

article the authors study the dynamics of development of the forestry sector of the 

Lipetsk region, analyze the statistical indicators of this cluster, identify the features of 

the regional complex. 

Ключевые слова: лесной сектор региона, прикладная математика, 

статистический анализ.  

Keywords: the forest sector of the region, applied mathematics, statistical 

analysis. 

 

Российские леса составляют почти одну четвертую мировых запасов 

древесины и являются самым большим углеродным стоком на планете. 

Липецкая область входит в состав Центрального федерального округа, 

Центрально-Черноземного макрорегиона и экономического района и 

расположена в центре Восточно-Европейской равнины, на границе 

Среднерусской возвышенности и Окско-Донской равнины, что определило 

ландшафт региона – в основном лесостепь. В области распространены сосново-

широколиственные, березовые и осиновые леса, небольшие дубравы: сосна – 

лесообразующая хвойная порода, дуб – лесообразующая лиственная порода. 

Крупные лесные массивы расположены по левому берегу реки Воронеж: 

Усманский бор – часть Воронежского государственного природного 

биосферного заповедника им. В.М. Пескова. Существующий с 1925 года 

заповедник «Галичья гора» объединяет участки реликтовой флоры в долине реки 

Дон. 

Развитие и использование потенциала лесного сектора в регионе играет 

важную роль в его социально-экономическом развитии [4]. Проблемы в данном 

комплексе могут стать не только реальным ограничителем в устойчивом 
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развитии региона, но и экологическим риском. Цель работы – исследование 

динамики лесного сектора Липецкой области на основе статистического анализа. 

Информационной базой исследования стали официальные статистические 

данные, полученные из открытых источников [3]. В ходе исследования были 

проанализирована динамика с 2010 по 2023 годы семи показателей, 

характеризующих развитие лесного сектора Липецкой области: X1 – 

лесовосстановление, тыс. га; X2 – число лесных пожаров, ед.; X3 – площадь 

лесных земель, пройденная пожарами, га; X4 – число предприятий и организаций 

(на конец года), работающих в лесном секторе, ед.; X5 – среднегодовая 

численность работников организаций, работающих в лесном секторе, чел.; X6 – 

производство древесины необработанной, тыс. плотных куб. м; X7 – площадь 

земель лесного фонда, тыс. га. В анализе использовались методы общей теории 

статистики (метод группировок, графический и табличный методы, анализ 

структуры и динамики) и математической статистики: корреляционный и 

регрессионный анализ.  

Лесовосставление в области – одно из приоритетных направлений. 

Благодаря национальному проекту «Экология» (2019-2024 гг.) на территории 

региона реализован региональный проект «Сохранение лесов», результат – 

площадь лесовосстановления и лесоразведения превысила площадь 

вырубленных и погибших лесных насаждений [2]. В 2023 году по сравнению с 

2022 годом площадь земель лесного фонда в регионе увеличилась на 1 тыс. га 

или на 0.5%. Максимальный прирост показателя наблюдался в 2017 году (13 тыс. 

га). В 2023 году по сравнению с 2010 годом площадь земель лесного фонда 

увеличилась на 28 тыс. га или на 15.3%. В среднем площадь земель лесного 

фонда ежегодно увеличивается на 1.1% или на 2.15 тыс. га, среднее значение 

показателя с 2010 по 2023 годы составило 196.67 тыс. га. Расчёт показателей 

динамики показал, что в 2023 году по сравнению с 2022 годом увеличения 

лесовосстановления в области не произошло, максимальный прирост показателя 

наблюдался в 2011 году – 1 тыс. га, минимальный – зафиксирован в 2017 
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(сокращение на 0.8 тыс. га). Темп наращения свидетельствует о возрастающей 

тенденции лесовосстановления в регионе.  

С 2015 года Липецкая область – единственная в России, где не было ни 

одного лесного пожара: во всех лесничествах ставка сделана на 

профилактическое предупреждение происшествий с огнём. Установлено, что все 

небольшие лесные пожары были обнаружены в процессе наземного мониторинга 

и локализованы в первые сутки после их обнаружения [1]. В регионе не 

зафиксировано за последние годы крупных возгораний в лесном секторе, что 

говорит о сложившейся убывающей тенденции. 

В 2023 году в Липецкой области работало в области лесного хозяйства  

4 предприятия. Максимальный прирост показателя наблюдался в 2016 году – в 

регионе открылось 4 новых предприятия (всего было 11 предприятий и 

организаций), в 2019 произошло их сокращение (ушли с рынка 6). 

В 2023 году по сравнению с годом ранее среднегодовая численность 

работников организаций уменьшилось на 23 человека или на 11.6%. 

Максимальный прирост показателя наблюдался в 2018 году (209 чел.), в 2017 

году зафиксирован рекордный отток рабочей силы из лесного сектора 

(сокращение на 154 человек). В сравнении с 2010 годом в 2023 году 

среднегодовая численность работников организаций уменьшилась на 56 человек 

или на 24.1%. В исследуемом периоде в среднем среднегодовая численность 

работников организаций лесного сектора в регионе ежегодно сокращалась на 

2.1% или на 5 человек. 

В 2023 году в регионе по сравнению с годом ранее производство 

необработанной древесины увеличилось на 19.9 тыс. плотных куб. м или на 

20.5%. Максимальный прирост наблюдался в 2018 (29 тыс. плотных куб. м), 

существенное сокращение показателя зафиксировано за исследуемый период в 

2012 (-89.3 тыс. плотных куб. м). Темп наращения показывает, что тенденция 

ряда возрастающая, что свидетельствует об ускорении производства 

необработанной древесины в области. В сравнении с 2010 годом в 2023 
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производство древесины необработанной в регионе уменьшилось на 45.6 тыс. 

плотных куб. м или на 28%.  

На основе критерия Ирвина (на уровне значимости 0,05 и k =1,3) выявлено 

наличие аномальных значений во всех исследуемых временных рядах, кроме 

ряда X7 – площадь земель лесного фонда(табл.1).  

Таблица 1 – Результаты по критерию Ирвина 

Ряд Аномальные значения Ряд Аномальные значения 

X1 2011 1,4 

2017 0,6 
 

X5 2011 125 

2013 322 

2014 229 

2017 16 

2018 225 
 

X2 2011 22 
 

X3 2011 7 
 

X4 2016 11 

2019 6 
 

X6 2012 49,7 
 

 

На основе достаточно мощного критерия, улавливающего смещение 

оценки математического ожидания монотонного и периодического характера, –  

"восходящих" и "нисходящих" серий на уровне значимости 0,05 установлено 

наличие линейного тренда в ряду «Площадь земель лесного фонда» (рис.1), 

ошибка аппроксимации составила 1,63%, что свидетельствует о хорошем 

подборе модели к исходным данным. Достаточно близкое к нулю значение 

коэффициента несоответствия Тейла – 0,0205 подтверждает малую погрешность 

и хорошую точность прогноза по построенной модели. На основе построенной 

модели в Липецкой области отмечаем ежегодное увеличение площади земель 

лесного фонда в среднем на 2.5 тыс. га. 

 

Рисунок 1 –Тренд в ряду «Площадь земель лесного фонда» 
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Статистическая значимость уравнения проверена с помощью 

коэффициента детерминации (R2=0,86) и критерия Фишера (Fкp(1;12;0.05) = 

4.7472,F=73,79). Проведённый анализ точности определения оценок параметров 

уравнения тренда (стандартная ошибка уравнения – 4,37 тыс. га, параметров 

соответственно – 2,45 и 0,29), подтвердил хорошую точность модели. На основе 

критерия Стьюдента подтверждена статистическая значимость коэффициентов 

модели (Tтабл (12;0.025) = 2.56, ta=8,59, tb=72,14). Доверительные интервалы 

коэффициентов трендас надежность 95% (1.75;3.23) и (171.69;184.32) 

соответственно. Рассчитанное значение коэффициента автокорреляции 

свидетельствует об отсутствии в исследуемом ряду автокорреляции первого 

порядка (-0.684<r1=0.577<0.684) и выполнении условия независимости остатков, 

однако критерий Дарбина – Уотсонана уровне значимости 5% уловил 

присутствие автокорреляция остатков (d1 = 1.08; d2 = 1.36, DW=0,8). Проверка 

нормальности распределения остаточной компоненты на основе RS-критерия 

(RS=3,49) подтвердила адекватность модели по нормальности распределения 

остаточной компоненты. 

Прослеживается прямая положительная корреляционная зависимость 

между ВРП (в текущих основных ценах, млн. руб.) Липецкой области и 

производством необработанной древесины в регионе (табл.1). Доходы от 

использования лесов за первое полугодие 2023 года превысили 18,6 млн. руб., 

что на 8% больше, чем доходы за аналогичный период 2023 года. За первое 

полугодие 2023 года Липецкая область направила в федеральную казну более 

14,2 млн. руб., что на 15% больше, чем за первое полугодие 2022 года. Доходы, 

направленные в региональный бюджет, выросли на 6% и составили порядка 4,4 

млн. руб. [1]. Полученные результаты согласуются с результатами проведённого 

корреляционного анализа (табл.2). 

С 2018 года ежегодно в Липецкой области привлекаются инвестиции, 

направленные на охрану и рациональное использование лесных ресурсов. Доля 

природоохранных инвестиций в основной капитал демонстрирует устойчивое 

увеличение, в структуре природоохранных расходов растет доля текущих затрат 

на охрану и рациональное использование лесных ресурсов (табл. 3)  
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Таблица 2 – Матрица парных коэффициентов корреляции показателей, 

характеризующих развитие лесного сектора Липецкой области и ВРП региона 

 X1 X2 X3 X4 X5 X6 ВРП 

X1 1,000       

X 2 0,998 1,000      

X 3 -0,186 -0,191 1,000     

X 4 0,158 0,172 -0,390 1,000    

X 5 0,423 0,411 0,058 -0,272 1,000   

X 6 -0,366 -0,348 -0,294 -0,121 0,405 1,000  

ВРП -0,387 -0,365 -0,268 -0,171 0,222 0,889 1,000 

 

Таблица 3 – Инвестиции в основной капитал, направленные на охрану и 

рациональное использование лесных ресурсов по Липецкой области [3] 

  2010 2015 2016 2017 2018 2019 2020 2021 2022 

Инвестиции в основной 

капитал (млн. руб.), из них 

на: 

4251,3 3164,0 3506,6 2038,0 4396,0 4741,5 5514,1 15391,8 10445,6 

охрана и рациональное 

использование лесных 

ресурсов 

    2,5 9,9 0,1 4,9 5,5 

Инвестиции в основной 

капитал (в процентах к 

предыдущему году), из 

них на: 

106,2 177,2 104,2 57,3 в 2,1 р. 100,0 108,6 в 2,7 р. 58,6 

охрана и рациональное 

использование лесных 

ресурсов 

    21,8 в 3,7 р. 1,0 в 42,2 р. 97,8 

 

Таким образом, на основе проведения статистического анализа в развитии 

лесного сектора Липецкой области выявлены следующие особенности:  

– в регионе активно решается проблема лесовосстановления, это 

благоприятно складывается на экономике и экологии региона, что было 

отмечено на федеральном уровне; 

– средства, поступившие в бюджет от производства необработанной 

древесины в регионе, идут на лесовосстановление, закупку лесохозяйственной и 

лесопожарной техники, финансирование лесничеств, уход за молодняком, 

лечение деревьев, формирование запаса лесных семян; 
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– производство необработанной древесины в области активно развивается, 

в качестве причин назовём низкую цену за куб, широкое применение в 

строительстве, простая переработка;  

– в регионе применяются различные способы по утилизации древесных 

отходов: изготовление упаковки, производство строительных материалов, 

получение биотоплива или технического спирта, среды для выращивания 

грибов, щепки для копчения продуктов, утепление домов; вторичная 

переработка древесины и правильная утилизация позволяют снизить попадание 

вредных веществ в окружающую среду. 
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Аннотация. В статье построены операторы преобразования типа Векуа-

Эрдейи-Лаундеса, действующие по первой производной. Такие операторы 

применимы для решения широкого круга задач для уравнений типа 

теплопроводности. 

Abstract. The article develops transformation operators of the Vekua-Erdelyi-

Lowndes type that operate on the first derivative. These operators are useful for 

addressing a broad spectrum of problems related to heat conduction equations. 
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Введение 

Дадим определение оператора преобразования, следуя [1]. Пусть у нас есть 

два оператора (𝐴, 𝐵). Ненулевой оператор T называется оператором 

преобразования, если выполняется следующее соотношение 

 

𝑇𝐴 = 𝐵𝑇. (1) 

  

Соотношение (1) называется сплетающим свойством, а оператор T также 

называют сплетающим оператором. 

Оператор T обычно является интегральным оператором с некоторым 

ядром, вид которого иногда можно найти явно. 

Первостепенное значение для метода операторов преобразования имеет 

выбор соответствующих пространств функций, где справедливо равенство (1). 

В нашей статье получен специальный класс операторов преобразования, 

которые сплетают операторы 𝐴 + 𝜆1 и 𝐴 + 𝜆2, где 𝐴: 𝐿1 → 𝐿2 – некоторый 

оператор, 𝜆1, 𝜆2 ∈ ℂ. Такие операторы преобразования появляются в работах А. 

Эрдейи, И. Н. Векуа и Дж. С. Лаундеса (см. ссылки в [2]). Поэтому их 

естественно называть операторами Векуа-Эрдейи-Лаундеса (ВЭЛ). 

Используя оператор преобразования ВЭЛ, получим утверждение о связи 

между решениями задач Коши для уравнений 𝑤𝑡 = 𝐴𝑤 и 𝑤𝑡 ± с
2𝑤 = 𝐴𝑤, где 

𝑤 = 𝑤(𝑥, 𝑡), 𝑡, 𝑐 ∈ ℝ, 𝐴 – линейный оператор, действующий по 𝑥 ∈ ℝ𝑛. К этому 

типу относятся, например, уравнение теплопроводности, одномерное уравнение 

Шрёдингера. Такие уравнение часто встречается в теории тепло- и 
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массопереноса. Они описывают нестационарные тепловые процессы в 

покоящейся среде или твердом теле с постоянной температуропроводностью. 

 

Построение операторов преобразования Векуа-Эрдейи-Лаундеса 

для первой производной в форме операторов Вольтерра второго рода 

В этом разделе мы строим операторы преобразования 𝐿𝑐
± со сплетающим 

свойством 𝐿𝑐
±𝐷𝑓 = (𝐷 ± 𝑐2)𝐿𝑐

±𝑓. Процесс построения включает интегрирование 

по частям и дифференцирование интеграла по параметру, а также решение 

линейного однородного дифференциального уравнения в частных производных 

первого порядка. 

Теорема 1. Пусть 𝑓 ∈ 𝐶1. Операторы преобразования 𝐿𝑐
±, 

удовлетворяющие тождеству 

𝐿𝑐
±𝐷𝑓 = (𝐷 ± 𝑐2)𝐿𝑐

±𝑓, (2.1) 

где 𝐷 =
𝑑

𝑑𝑡
, имеют вид операторов Вольтерра 

ядра которых имеют вид  

где Φ(𝑠) – произвольная непрерывно дифференцируемая функция. 

При дополнительных условиях 

𝑑𝐾+(𝑡,− 𝑡)

𝑑𝑡
= −

с2

2
,     𝐾+(𝑡, 𝑡) = 0, 

ядро 𝐾+ имеет вид 𝐾+(𝑡, 𝜏) = −
с2

4
(𝑡 − 𝜏) 𝑒−

𝑐2

2
(𝑡+𝜏). 

При дополнительных условиях 

𝑑𝐾−(𝑡,− 𝑡)

𝑑𝑡
=

с2

2
,     𝐾−(𝑡, 𝑡) = 0, 

ядро 𝐾− имеет вид 𝐾−(𝑡, 𝜏) = −
с2

4
(𝜏 − 𝑡) 𝑒

𝑐2

2
(𝑡+𝜏). 

 

(𝐿𝑐
±𝑓)(𝑡) = ∫𝐾±(𝑡, 𝜏)𝑓(𝜏)𝑑𝜏

𝑡

−𝑡

, (2.2) 

𝐾±(𝑡, 𝜏) = 𝑒∓𝑐
2𝜏 ∙ Φ(±(t − τ)), (2.3) 
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Доказательство. 

 Мы ищем оператор преобразования, удовлетворяющий тождеству (2.1) в 

форме оператора Вольтерра (2.2). Здесь ядро 𝐾±(𝑡, 𝜏) гладкое по обеим 

переменным. 

Рассмотрим случай 𝐿𝑐
+𝐷𝑓 = (𝐷 + 𝑐2)𝐿𝑐

+𝑓. Подстановка в (2.1) приводит к 

соотношению 

∫𝐾+(𝑡, 𝜏)

𝑡

−𝑡

𝑓′(𝜏)𝑑𝜏 =
𝑑

𝑑𝑡
∫𝐾+(𝑡, 𝜏)

𝑡

−𝑡

𝑓(𝜏)𝑑𝜏 + 𝑐2 ∫𝐾+(𝑡, 𝜏)

𝑡

−𝑡

𝑓(𝜏)𝑑𝜏. 

Поскольку 

∫𝐾+(𝑡, 𝜏)

𝑡

−𝑡

𝑓′(𝜏)𝑑𝜏 = 𝐾+(𝑡, 𝑡)𝑓(𝑡) − 𝐾+(𝑡, −𝑡)𝑓(−𝑡) − ∫𝐾𝜏
+(𝑡, 𝜏)

𝑡

−𝑡

𝑓(𝜏)𝑑𝜏 

и 

𝑑

𝑑𝑡
∫𝐾+(𝑡, 𝜏)

𝑡

−𝑡

𝑓(𝜏)𝑑𝜏 = 

= ∫𝐾𝑡
+(𝑡, 𝜏)

𝑡

−𝑡

𝑓(𝜏)𝑑𝜏 + 𝐾+(𝑡, 𝑡)𝑓(𝑡) − 𝐾+(𝑡, −𝑡)𝑓(−𝑡), 

то мы получаем 

−𝐾𝜏
+(𝑡, 𝜏) = 𝐾𝑡

+(𝑡, 𝜏) + 𝑐2𝐾+(𝑡, 𝜏). (2.4) 

Пусть 𝐾+(𝑡, 𝜏) ∈ С1(Ω), Ω̅ ⋂ {(𝑡, 𝜏) | 𝑡 = 𝜏} ≠ ∅. Уравнение (2.4) является 

линейным однородным дифференциальным уравнением в частных производных 

первого порядка. Запишем его в виде 

𝐾𝜏
+(𝑡, 𝜏) + 𝐾𝑡

+(𝑡, 𝜏) = −𝑐2𝐾+(𝑡, 𝜏). (2.5) 

Используя метод характеристик Лагранжа для решения уравнения в частных 

производных первого порядка для уравнения (2.5) составим систему уравнений 

𝑑𝜏

1
=

𝑑𝑡

1
= −

𝑑𝐾+(𝑡,𝜏)

𝑐2𝐾+(𝑡,𝜏)
= 𝑑𝑠.  
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Найдем первое характеристическое уравнение: 

𝑑𝜏

1
=
𝑑𝑡

1
⇒ 𝜏 − 𝑡 = 𝐶1. 

Найдем второе характеристическое уравнение: 

𝑑𝜏

1
= −

𝑑𝐾+(𝑡, 𝜏)

𝑐2𝐾+(𝑡, 𝜏)
⇒         𝜏 = −

1

𝑐2
ln(𝑐2𝐾+(𝑡, 𝜏)) ⇒ 

−𝑐2𝜏 =  ln(𝑐2𝐾+(𝑡, 𝜏)) ⇒           𝑐2ln 𝑒𝜏 + ln(𝑐2𝐾+(𝑡, 𝜏)) = 0 ⇒ 

ln 𝑒𝑐
2𝜏 + ln(𝑐2𝐾+(𝑡, 𝜏)) = 0 ⇒           ln(𝑐2𝑒𝑐

2𝜏𝐾+(𝑡, 𝜏)) = 0 ⇒ 

𝐾+(𝑡, 𝜏) ∙ 𝑒𝑐
2𝜏 = 𝐶2. 

Тогда общее решение уравнения (2.5) имеет вид 

𝐾+(𝑡, 𝜏) ∙ 𝑒𝑐
2𝜏 = Φ(t − τ)  

где Φ(t − τ) – произвольная непрерывно дифференцируемая функция. Таким 

образом 

𝐾+(𝑡, 𝜏) = 𝑒−𝑐
2𝜏 ∙ Φ(t − τ). (2.6) 

Чтобы найти функцию Φ(t − τ), введем дополнительные условия: 

𝑑𝐾+(𝑡, − 𝑡)

𝑑𝑡
= −

с2

2
, (2.7) 

𝐾+(𝑡, 𝑡) = 0. (2.8) 

Теперь найдем такую функцию Φ(t − τ), чтобы условия (2.7) и (2.8) 

выполнялись. Введение новых переменных 

𝑢 =  
t +  τ

2
,        𝑣 =  

t −  τ

2
   ⇒     𝑡 = 𝑢 + 𝑣,    τ = u − v (2.9) 

и использование обозначений 𝐻+(𝑢, 𝑣) =  𝐾+(𝑢 + 𝑣, 𝑢 − 𝑣) = 𝐾+(𝑡, 𝜏) дает 

задачу 

𝐻𝑣
+(𝑢, 𝑣) = −𝑐2𝐻+(𝑢, 𝑣)  

𝐻+(0, 𝑣) = −
с2

2
𝑣 (2.10) 

Теперь запишем равенство (2.10) с учетом замены (2.9) 

𝐻+(𝑢, 𝑣) = 𝑒−𝑐
2(𝑢−𝑣) ∙ Φ(2𝑣). (2.11) 
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Из условия (2.10) получаем 

𝐻+(0, 𝑣) = 𝑒𝑐
2𝑣 ∙ Φ(2𝑣) = −

с2

2
𝑣. 

Тогда 

Φ(2𝑣) = 𝑒−𝑐
2𝑣 ∙ (−

с2

2
𝑣). (2.12) 

Подставим (2.12) в (2.11), получим 

𝐻+(𝑢, 𝑣) = −
с2

2
𝑣 𝑒−𝑐

2𝑣 ∙  

Возвращаясь к 𝐾+(𝑡, 𝜏), получаем 

𝐾+(𝑡, 𝜏) = −
с2

4
(𝑡 − 𝜏) 𝑒−

𝑐2

2
(𝑡+𝜏). 

 

(2.13) 

Легко видеть, что 𝐾+(𝑡, 𝑡) = 0, а 𝐾+(𝑡, −𝑡) = −
с2

2
𝑡 ⇒   

𝑑𝐾+(𝑡,−𝑡)

𝑑𝑡
= −

с2

2
.  

Следовательно, условия (2.7)-(2.8) справедливы 

Проверим выполнение (2.5): 

𝐾𝜏
+(𝑡, 𝜏) =

с2

8
 𝑒−

𝑐2

2
(𝑡+𝜏)(с2(𝑡 − 𝜏) + 2), 

𝐾𝑡
+(𝑡, 𝜏) =

с2

8
 𝑒−

𝑐2

2
(𝑡+𝜏)(с2(𝑡 − 𝜏) − 2), 

тогда 

𝐾𝜏
+(𝑡, 𝜏) + 𝐾𝑡

+(𝑡, 𝜏) =
с2

8
 𝑒−

𝑐2

2
(𝑡+𝜏)(с2(𝑡 − 𝜏) + 2 + с2(𝑡 − 𝜏) − 2) =

=
с4

4
 (𝑡 − 𝜏)𝑒−

𝑐2

2
(𝑡+𝜏) = −𝑐2𝐾+(𝑡, 𝜏). 

Получаем, что (2.13) является ядром оператора (2.2). 

Аналогично находим 𝐾−(𝑡, 𝜏) = 𝑒𝑐
2𝜏 ∙ Φ(τ − t), 𝐾−(𝑡, 𝜏) = −

с2

4
(𝜏 − 𝑡) 𝑒

𝑐2

2
(𝑡+𝜏). 

Ч.т.д. 

 



70 

Список литературы 

 

1. Shishkina E.L. Transmutations, singular and fractional differential equations 

with applications to mathematical physics / E.L. Shishkina, S.M.  Sitnik //. Elsevier, 

Amsterdam; 2020. 592 p. 

2. Шишкина Э. Л., Алзамили Х., Кудоси А. М., Ситник С. М. Приложения 

операторов преобразования типа Векуа – Эрдейи – Лаундеса к 

дифференциальным уравнениям / Шишкина Э. Л., Алзамили Х., Кудоси А. М., 

Ситник С. М. // Прикладная математика & Физика. 2024. № 56 (1). С. 27–34. 

 

References 

 

1. Shishkina E.L. Transmutations, singular and fractional differential equations 

with applications to mathematical physics / E.L. Shishkina, S.M.  Sitnik //. Elsevier, 

Amsterdam; 2020. 592 p. 

2. Shishkina E. L., Alzamili H., Qudosi A. M., Sitnik S. M. 2024. Applications 

of Transmutations of Vekua – Erd’elyi – Lowndes Type to Differential Equations. 

Applied Mathematics & Physics, № 56(1). С. 27–34. 

 
 

 

 

 

 

 

 

 

 

 

 



71 

DOI: 10.58168/OpEq2025_71-86 

УДК 004.932 

ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ПРЕОБРАЗОВАНИЯ РАДОНА                 

К ШУМУ ПРИ ОБНАРУЖЕНИИ ПРЯМЫХ ЛИНИЙ                                            

НА ИЗОБРАЖЕНИЯХ 

INVESTIGATION OF THE STABILITY OF RADON-TO-NOISE CONVERSION 

DURING LINE DETECTION IN IMAGES 

Кожемякин Никита Сергеевич© 

студент 4 курса факультета прикладной математики, информатики и механики 

ВГУ, г. Воронеж, Россия 

Kozhemiakin Nikita Sergeevich 

4th year student of the Faculty of Applied Mathematics, Computer Science and 

Mechanics of VSU, Voronezh, Russia 

 

Аннотация. В данной статье рассматриваются модификации 

преобразования Радона, направленные на обнаружение прямых линий на 

зашумленных изображениях. Проведён сравнительный анализ трёх подходов: 

классического преобразования, пороговой и локальной модификаций. Пороговая 

модификация реализует предварительное подавление слабых интенсивностей, в 

то время как локальная ограничивает область интегрирования по длине отрезка. 

Для каждого метода проведены эксперименты с использованием синтетических 

изображений при различных уровнях шума. На основе анализа пиков и 

восстановленных линий показано, что каждая модификация обладает своими 

преимуществами и применима в разных условиях. Работа подчёркивает 

актуальность задачи и необходимость дальнейшего исследования 

преобразования Радона в области поиска линий на изображении. 
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Abstract. This paper considers modifications of the Radon transform aimed at 

detecting straight lines in noisy images. A comparative analysis of three approaches is 

presented: the classical Radon transform, the thresholded modification, and the 

localized integration. The thresholded approach suppresses low-intensity values prior 

to transformation, while the localized method limits the integration region to a finite-

length segment. Each method was tested on synthetic images with varying levels of 

noise. Based on the analysis of peaks in the sinogram and the reconstructed lines, it is 

shown that each modification has its own advantages and is applicable under different 

conditions. The study highlights the relevance of the problem and the need for further 

research on the Radon transform in the context of line detection in images. 

Ключевые слова: преобразование Радона, обнаружение прямых, 

устойчивость к шуму, пороговая фильтрация, локальная интеграция, 

восстановление линий. 

Keywords: Radon transform, line detection, noise robustness, local maxima, 

thresholding, localized integration, line reconstruction. 

 

1. Введение 

Обнаружение прямых линий на изображениях является важной задачей, с 

которой мы сталкиваемся в разных областях, от медицинских технологий до 

робототехники. Одним из наиболее известных методов выделения прямых линий 

является преобразование Радона. С его помощью изображение преобразуется в 

параметрическое пространство, где линии отображаются как локальные 

максимумы. Это делает процесс обнаружения более удобным для 

автоматической обработки. Однако классическое преобразование Радона 

обладает серьезным недостатком - чувствительностью к шуму, который 

неизбежно присутствует в реальных изображениях. 
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2. Классическое преобразование Радона 

Преобразование Радона функции двух переменных 𝑓(𝑥, 𝑦) определяется 

как интеграл этой функции вдоль прямой, заданной в параметрическом виде, и 

выражается следующей формулой:  

𝑅(𝑠, 𝛼) =  ∫ 𝑓(𝑠 cos 𝛼 − 𝑧 sin 𝛼, 𝑠 sin 𝛼 + 𝑧 cos𝛼)
+∞

−∞

(1) 

где 𝑠 - расстояние от начала координат до прямой, 𝛼 - угол между прямой и осью 

x, 𝑧 - переменная, задающая положение вдоль прямой. 

Данное представление удобно для геометрической интерпретации, однако 

в вычислительных приложениях, таких как обработка изображений, чаще 

используется эквивалентная формула с применением дельта-функции Дирака: 

𝑅(𝑠, 𝛼) =  ∬𝑓(𝑥, 𝑦)𝛿(𝑠 − 𝑥 cos𝛼 − 𝑦 sin𝛼)𝑑𝑥𝑑𝑦

 

𝑅2

(2) 

где 𝛿(∙) - дельта-функция, которая выделяет множество точек (𝑥, 𝑦), лежащих на 

прямой с параметрами (𝑠, 𝛼). Такое представление особенно удобно при 

дискретизации и построении алгоритмов выделения прямых на цифровом 

изображении. 

В задачах нахождения прямых линий преобразование Радона применяется 

следующим образом. Изображение 𝐼(x, y) трактуется как дискретная двумерная 

функция, и для каждого направления 𝛼 и набора расстояний 𝑠 вычисляется сумма 

значений пикселей, лежащих на соответствующих прямых. Полученное 

двумерное распределение 𝑅(𝛼, 𝑠), называемое синограммой или результатом 

преобразования, содержит локальные максимумы в тех точках параметрического 

пространства, где проекция изображения имеет выраженную линейную 

структуру. Таким образом, задача выделения прямых на изображении сводится к 

поиску пиков на синограмме. 
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2.1   Преобразование Радона при обнаружении линий 

В данном экспериментальном исследовании использовалась дискретная 

реализация классического преобразования Радона, представленная в функции 

radon из библиотеки scikit-image (Python). 

Тестовые изображения представляли собой ромбовидную структуру, 

нарисованную на чёрном фоне.  

Для моделирования реальных искажений к изображениям добавлялся 

гауссовский шум с нулевым средним и двумя уровнями дисперсии: 

• слабый шум: 𝜎 = 0.05, 

• сильный шум: 𝜎 = 0.2. 

      

(а) Исходное изображение          (b) Преобразование Радона 

 

   (с) Восстановленные линии 

Рис. 1.1: результат работы преобразования Радона с последующим 

восстановлением линий 
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Получены результаты применения классического преобразования Радона к 

изображению ромба без добавления шума (рис.1.1). На исходном изображении 

(рис. 1.1a) отчётливо видны границы фигуры. Результаты преобразования (рис. 

1.1b) демонстрируют четыре выраженных пика, соответствующих ориентациям 

сторон ромба. На восстановленном изображении (рис. 1.1c) видно, что линии 

точно соответствуют исходной структуре. Это подтверждает корректную работу 

алгоритма в идеальных условиях. 

 

       

(а) Исходное изображение          (b) Преобразование Радона  

 

   (с) Восстановленные линии 

Рис. 2.1: результат работы преобразования Радона при шуме с коэффициентом 

𝜎 = 0.05 с последующим восстановлением линий 
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При слабом шуме с дисперсией 𝜎 = 0.05, результаты приведены на рисунке 

2.1. На исходном изображении (рис. 2.1a) заметны искажения структуры, однако 

форма ромба всё ещё различима. Результаты преобразования (рис. 2.1b) 

сохраняют основные пиковые области, хотя наблюдается некоторое расширение 

и размытость пиков, вызванная шумом. Несмотря на это, восстановленное 

изображение (рис. 2.1c) всё ещё позволяет корректно выделить основные 

прямые, хотя уже появляются дополнительные ложные срабатывания. 

       

(а) Исходное изображение          (b) Преобразование Радона  

 

   (с) Восстановленные линии 

Рис. 2.2: результат работы преобразования Радона при шуме с коэффициентом 

𝜎 = 0.2 с последующим восстановлением линий 
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Существенное ухудшение результатов наблюдается при сильном шуме с 

дисперсией 𝜎 = 0.2 (рис. 2.2). Изображение (рис. 2.2a) почти полностью теряет 

различимость исходной структуры. На результатах преобразования (рис. 2.2b) 

появляются многочисленные пиковые области, вызванные шумом. Это приводит 

к росту количества восстановленных линий (рис. 2.2c): на изображении 

появляются как истинные, так и ложные прямые, что делает результат трудно 

интерпретируемым. 

Классическое преобразование Радона эффективно в условиях отсутствия 

или слабого шума. Однако при увеличении интенсивности шума происходит 

резкое снижение точности. Это указывает на необходимость применения 

модификаций классического метода, которые могут повысить устойчивость к 

шуму, таких как пороговая и локальная модификации, рассмотренные далее. 

 

3. Пороговое преобразование Радона 

 

Для повышения устойчивости преобразования Радона к шуму можно 

применить простую, но эффективную модификацию - пороговое 

преобразование Радона. Идея заключается в том, чтобы при вычислении 

учитывать только те точки изображения, значения которых превышают 

определённый порог, соответствующий значимым структурам. Таким образом, 

вклад слабых (возможно шумовых) пикселей в интеграл подавляется, а вклад 

сильных контурных элементов усиливается. 

Определим пороговую функцию 𝑓𝑇(𝑥, 𝑦) по следующему правилу: 

𝑓𝑇(𝑥, 𝑦) =  {
𝑓(𝑥, 𝑦), при 𝑓(𝑥, 𝑦) ≥ 𝑇
0, в других случаях

 

где 𝑇 > 0 - выбранное пороговое значение. Тогда пороговое преобразование 

Радона имеет следующий вид (3): 

𝑅𝑇(𝑠, 𝛼) =  ∬𝑓𝑇(𝑥, 𝑦)𝛿(𝑠 − 𝑥𝑐𝑜𝑠𝛼 − 𝑦𝑠𝑖𝑛𝛼)𝑑𝑥𝑑𝑦

 

𝑅2

(3) 
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Таким образом, интегрирование вдоль прямой осуществляется только по 

тем точкам, где интенсивность изображения превышает порог 𝑇, а остальные 

значения обнуляются. Выбор значения порога 𝑇 может быть как фиксированным, 

так и динамичным, например, по критерию Отсу или по медианному значению. 

В данной работе использовался порог по критерию Отсу. 

 

3.1   Пороговое преобразование Радона при обнаружении линий 

 

В рамках экспериментального исследования устойчивости преобразования 

Радона к шуму была реализована пороговая модификация. В качестве основы 

использовалась дискретная реализация классического преобразования Радона, 

представленная в функции radon из библиотеки scikit-image (Python). Все 

остальное окружение и тестовые данные не изменялись, они аналогичны данным 

в экспериментальной части, связанной с классическим преобразованием Радона. 

Пороговая фильтрация осуществлялась до применения преобразования 

Радона: все значения пикселей изображения, не превышающие заданный порог, 

обнулялись. Величина порога T определялась автоматически по критерию Отсу 

с помощью функции threshold_otsu из scikit-image. Так сохранялись наиболее 

интенсивные участки изображения. 
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(а) Исходное изображение          (b) Преобразование Радона (пороговое)  

 

   (с) Восстановленные линии 

Рис. 3.1: результат работы порогового преобразования Радона при шуме с 

коэффициентом 𝜎 = 0.05 с последующим восстановлением линий 
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(а) Исходное изображение          (b) Преобразование Радона (пороговое)  

 

(c)  Восстановленные линии 

 

Рис. 3.2: результат работы порогового преобразования Радона при шуме с 

коэффициентом 𝜎 = 0.2 

 

Получены результаты применения порогового преобразования Радона к 

изображению ромба при слабом шуме 𝜎 = 0.05 (рис.3.1). Результаты 

преобразования (рис. 3.1b) чётко выделяют четыре основных пика, 

соответствующих сторонам фигуры. Восстановленные линии (рис. 3.1с) 
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подтверждают, что после фильтрации удалось корректно определить геометрию 

ромба. 

Далее представлены результаты при сильном шуме 𝜎 = 0.02 Несмотря на 

значительное искажение изображения и повышение фона, метод всё ещё 

способен извлекать основные направления ромба. Результаты преобразования 

содержат ряд дополнительных слабых пиков (рис. 3.2b). Восстановление линий 

(рис. 3.2с) демонстрирует умеренное количество ложных срабатываний. 

Основные линии ромба видно, но можно заметить достаточное количество 

ложных линий. Это говорит о неэффективности данного преобразования на 

сильно зашумленных изображениях, но при этом полученные результаты лучше, 

чем в классическом преобразовании Радона (рис. 2.1, рис. 2.2). 

 

4. Локальное преобразование Радона 

 

Пороговая модификация преобразования Радона направлена на 

фильтрацию по значению яркости, устраняя вклад слабых пиков, которые могут 

быть обусловленных шумом. Данный подход является глобальным, как и само 

классическое преобразование Радона (2) : интегрирование происходит по всей 

бесконечной прямой, проходящей через всё изображение. Даже при пороговой 

фильтрации шумы могут давать вклад в синограмму, особенно в условиях 

высокой интенсивности шума. 

Следующим логичным шагом является ограничение области 

интегрирования - не по яркости, а по пространству, с целью повышения 

устойчивости к шуму. Перейдем к такому понятию, как локальное 

преобразование Радона - модификации, в которой классическое интегрирование 

вдоль всей прямой заменяется интегрированием по ограниченному отрезку 

заданной длины. Для этого нам необходимо внести некоторые изменения в форму 

записи преобразования Радона с дельта-фунцией. Любая точка (𝑠, 𝛼) может быть 

задана следующим образом: 
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𝑥(𝑡) = 𝑥0 − 𝑡𝑠𝑖𝑛𝛼;    𝑦(𝑡) = 𝑦0 + 𝑡𝑐𝑜𝑠𝛼,    𝑡 ∈ 𝑅 

где 𝑥0 = 𝑠𝑐𝑜𝑠𝛼 + 𝑐𝑥;    𝑦0 = 𝑠𝑖𝑛𝛼 + 𝑐𝑦 и (𝑐𝑥, 𝑐𝑦) - координаты центра 

изображения. Это позволяет получить следующий вид преобразования 

𝑅(𝑠, 𝛼) =  ∫ 𝑓(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡
+∞

−∞

(4) 

 

Далее нам необходимо локализовать преобразование Радона (4), чтобы 

повысить устойчивость метода к шуму. Именно поэтому вводится ограничение 

области интегрирования вдоль прямой, сохраняя только её центральную часть 

длины 2L. Получаем следующее: 

𝑅𝐿(𝑠, 𝛼) =  ∫ 𝑓(𝑥(𝑡), 𝑦(𝑡))𝑑𝑡
𝐿

−𝐿

(5) 

где 𝐿 > 0 - половина длины всего отрезка интегрирования. 

 

4.1   Локальное преобразование Радона при обнаружении линий 

 

В экспериментальной части исследования была реализована локальная 

модификация преобразования Радона, направленная на снижение влияния шума 

путём ограничения длины отрезка интегрирования вдоль прямой. В отличие от 

классического подхода, предполагающего свёртку вдоль всей прямой, локальное 

преобразование Радона использует интегрирование только по определенному 

отрезку фиксированной длины 2L, центрированному в каждой точке проекции. 

Все остальное окружение и тестовые данные не изменялись, они аналогичны 

данным в экспериментальной части, связанной с классическим преобразованием 

Радона. 
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(а) Исходное изображение         (b) Преобразование Радона (локальное) 

 

(c)  Восстановленные линии 

 

Рис. 3.1: результат работы локального преобразования Радона при шуме с 

коэффициентом 𝜎 = 0.05 с последующим восстановлением линий 
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(а) Исходное изображение          (b) Преобразование Радона (локальное)  

 

 

(c)  Восстановленные линии 

 

Рис. 4.2: результат работы локального преобразования Радона при шуме с 

коэффициентом 𝜎 = 0.2 с последующим восстановлением линий 

 

Получены результаты применения локального преобразования Радона к 

изображению ромба при слабом шуме 𝜎 = 0.05 (рис.3.1). Видно, что результаты 

преобразования (рис. 4.1b) имеют выраженные пики, соответствующие 

реальным структурам изображения. Восстановленные линии (рис. 4.1с) точно 
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совпадают с геометрией исходного изображения, при этом полностью 

отсутствуют ложные линии. 

Далее представлены результаты при сильном шуме 𝜎 = 0.02 (рис. 4.2). 

Несмотря на значительное зашумление, локальное преобразование сохраняет 

устойчивость: отсутствуют ложные пики (рис. 4.2b), все четыре ожидаемые 

линии выделены корректно, количество ложных линий сведено к минимуму (рис. 

4.2с) 

 Хотя и локальное преобразование показало себя хорошо на тестовых 

данных, с учетом его ограничений, оно может быть неэффективно, если линии 

занимают все пространство изображения. 

 

5. Вывод 

В данной работе была проведена серия экспериментов, направленных на 

исследование устойчивости различных вариантов преобразования Радона к 

шуму при обнаружении прямых линий на изображениях. Рассмотрены три 

подхода: классическое преобразование Радона, его пороговая модификация и 

локальная модификация с ограничением области интегрирования. 

Полученные результаты показали, что при отсутствии или слабом уровне 

шума классическое преобразование Радона обеспечивает точное восстановление 

линейных структур. Однако при повышении зашумленности точность резко 

снижается: результаты преобразования наполнаются ложными пиками, а 

количество ошибочных линий увеличивается. Пороговая модификация, 

реализующая предварительное исключение слабых интенсивностей, показала 

улучшение результатов, особенно при умеренной зашумленности. Тем не менее, 

при сильном шуме и она теряет эффективность. Наиболее устойчивым методом 

оказалось локальное преобразование Радона. 

При этом важно отметить, что ни одна из модификаций не является 

универсально наилучшей. Каждая из них может быть эффективна в 

определенной ситуации: пороговая - при выделении четких, ярко выраженных 
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структур, локальная - при нахождении коротких или частично разрушенных 

контуров в зашумленных данных, классическая - при высоком качестве 

исходного изображения.  
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Пусть в 𝑚-мерном векторном пространстве 𝐸𝑚 задана точка 𝑥 с 

координатами:  

𝑥 = (𝜔1, … , 𝜔𝑚) 

 
© Коротких А. С., 2025 



88 

Запишем закон движения точки 𝑥 в пространстве 𝐸𝑚 в виде системы 

обыкновенных дифференциальных уравнений 

{
 
 

 
 𝑑𝜔1
𝑑𝑡

= 𝑓1(𝑡, 𝜔1, … , 𝜔𝑚),
…………………………

𝑑𝜔𝑚
𝑑𝑡

= 𝑓𝑚(𝑡, 𝜔1, … , 𝜔𝑚),

 

Этот закон движения можно записать в векторном виде: 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥) 

 (1) 

Пусть функция 𝑓(𝑡, 𝑥) – непрерывна по совокупности переменных и 

определена для всех значений 𝑡, 𝜔1, … , 𝜔𝑚 ∈ (−∞;+∞). 

Введем начальные условия вида 

𝑥(𝑠) = 𝑥0  (2) 

такие, что каждому начальному условию соответствует единственное решение 

дифференциального уравнения (1). Соответствующее решение будет иметь вид: 

𝑥(𝑡) = 𝑝(𝑡; 𝑠; 𝑥0).  (3) 

Пусть решение (3) определено для всех −∞ < 𝑡 < +∞. 

Определение 1. Точка 𝑥0 ∈ 𝐸
𝑚, двигаясь по траекториям уравнения (1) за 

промежуток времени от 𝑠 до 𝑡, перейдет в некоторую новую точку 𝑥1 этого же 

пространства. Оператором сдвига по траекториям системы (1) называется 

оператор вида 𝑈(𝑡, 𝑠), задающий переход от 𝑥0 к 𝑥1. 

Из определения ясно, что оператор 𝑈(𝑡, 𝑠) совпадает с решением 

уравнения (1), поэтому справедливо равенство 

𝑈(𝑡, 𝑠)𝑥0 =  𝑝(𝑡; 𝑠; 𝑥0). 

Перейдем к рассмотрению периодической задачи. Для этого будем 

считать, что функция 𝑓(𝑡, 𝑥) из уравнения (1) удовлетворяет равенству 

𝑓(𝑡 + 𝑇, 𝑥) ≡ 𝑓(𝑡, 𝑥) 

Для ответа на вопрос о существовании 𝑇-периодического решения 

уравнения (1) необходимо исследовать оператор сдвига по траектория системы 
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ДУ, соответствующей уравнению (1), совпадающий с решением данного 

уравнения. 

Рассмотрим оператор сдвига в промежутке времени от 0 до 𝑇: 

𝑈𝑥 = 𝑈(𝑇, 0)𝑥  (4) 

Очевидно, что если 𝑥(0) является неподвижной точкой оператора (4), то 

решение  𝑥(𝑡) уравнения (1) будет 𝑇-периодичсеким. Верно и обратное 

утверждение. 

Таким образом, задача о доказательстве существования периодического 

решения системы ДУ, записанной в виде (1), сводится к доказательству 

существования неподвижных точек оператора сдвига (4). Для этого можно 

использовать такой метод, как теория векторных полей. 

Рассмотри поле 

𝑄𝑥 = 𝑥 − 𝑈(𝑇)𝑥.  (5) 

Для того, чтобы у оператора (4) существовали неподвижные точки, 

необходимо, чтобы существовала ограниченная область Ω с границей 𝐿, такая, 

что поле (5) имеет на этой границе топологическую степень, не равную нулю. В 

качестве такой области удобно выбрать шар такого радиуса 𝑅, чтобы все 

потенциальные 𝑇-периодичсекие решения уравнения (1) входили в этот шар 

‖𝑥‖ ≤ 𝑅. Для этого перед выбором области Ω проводится априорная оценка 𝑇-

периодичсеких решений. Главным аспектом является установление того факта, 

что топологическая степень векторного поля (5) не будет равна нулю. Так как 

оператор сдвига задается в неявном виде, применяются методы, разработанные 

М.А. Красносельским и А.И. Перовым. Многие принципы основываются на 

понятии точки 𝑇-невозвращаемости траекторий, однако в большинстве случаев 

затруднен поиск таких точек, поэтому наиболее удобным способом 

исследования является метод направляющих функций, сформулированный в [2]. 

С помощью данного метода можно вычислить топологическую степень 

векторного поля (5) [1]. 
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Рассмотрим применения этого метода на примере системы, 

удовлетворяющей виду (1): 

 

{

𝑑𝜀1
𝑑𝑡

= 𝑎𝜀1
3 + 3𝑏𝜀1

2𝜀2 + 𝑐𝜀1𝜀2
2 + 𝑑𝜀2

3 + 𝜑1(𝑡, 𝜀1, 𝜀2)

𝑑𝜀2
𝑑𝑡

= 𝑏𝜀1
3 + 𝑐𝜀1

2𝜀2 + 3𝑑𝜀1𝜀2
2 + 𝑒𝜀2

3 + 𝜑2(𝑡, 𝜀1, 𝜀2)

 

 

Необходимо указать правильную направляющую функцию данной 

системы и если ее индекс окажется отличным от нуля, то по сформулированному 

выше принципу, система будет иметь хотя бы одно  𝑇-периодичсекое решение. 

Для указания такой направляющей функции, которая бы удовлетворяла леммам 

и теоремам [2], необходимо ввести следующие ограничительные условия на 

систему уравнений: функции 𝜑1(𝑡, 𝜀1, 𝜀2) и 𝜑2(𝑡, 𝜀1, 𝜀2) должны 𝑇-периодичны 

по 𝑡 и 

 

lim
|𝜀1|+|𝜀2|→∞

𝜑1(𝑡, 𝜀1, 𝜀2)

|𝜀1|
3 + |𝜀2|

3
= lim
|𝜀1|+|𝜀2|→∞

𝜑2(𝑡, 𝜀1, 𝜀2)

|𝜀1|
3 + |𝜀2|

3
=0 

(6) 

 

Направляющая функция должна быть невырожденной, для этого 

уравнения 

 

𝑎𝑘3 + 3𝑏𝑘2 + 𝑐𝑘 + 𝑑 = 0 

𝑏𝑘3 + 𝑐𝑘2 + 3𝑑𝑘 + 𝑒 = 0 

(7) 

 

не должны иметь общих вещественных корней и 

 

|𝑎| + |𝑏| > 0 (8) 
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При выполнении перечисленных условий, заданная система становится 

системой с главной потенциальной частью и принимает вид: 

 

{
 

 
𝜕Ф0
𝜕𝜀1

= 𝑎𝜀1
3 + 3𝑏𝜀1

2𝜀2 + 𝑐𝜀1𝜀2
2 + 𝑑𝜀2

3

𝜕Ф0
𝜕𝜀2

= 𝑏𝜀1
3 + 𝑐𝜀1

2𝜀2 + 3𝑑𝜀1𝜀2
2 + 𝑒𝜀2

3

 

 

В таком случае легко указать направляющую функцию [4],  

 

Ф0(𝑥) =
1

4
𝑎𝜀1

4 + 𝑏𝜀1
3𝜀2 +

1

2
𝑐𝜀1

2𝜀2
2 + 𝑑𝜀1𝜀2

3 +
1

4
𝑒𝜀2

4 

 

Очевидно, что функция является четной, следовательно ее индекс нечетен, а 

как следствие, не равен нулю, что гарантирует наличие 𝑇-периодического 

решения системы. 
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Аннотация. В работе авторами обсуждаются вопросы многокритериальной 

оптимизации в военно-прикладных задачах, а именно метод последовательных 

уступок в задаче планирования ликвидации последствий техногенной 
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катастрофы. На основании данных о наличии комплектов для пожаротушения и 

ликвидации радиационного заражения, вероятностей выхода их из строя, 

имеющегося личного состава, сформулирована математическая модель. Модель 

содержит две целевых функции, одна из которых является приоритетной, и 

систему ограничений. С помощью графического метода решения задач 

линейного программирования и возможностей MS Excel 2010, авторами успешно 

применен метод последовательных уступок для решения многокритериальных 

задач, подготовлен отчет для рассмотрения лицом, принимающим решение. 

Отчет содержит решение задачи для разных значений уступок по первому 

критерию и соответствующие значения самих критериев. 

Abstract. The authors discuss the issues of multi-criteria optimization in military-

applied tasks, namely the method of successive concessions in the task of planning the 

elimination of the consequences of a man-made disaster. Based on the data on the 

availability of fire extinguishing and radiation contamination kits, the probabilities of 

their failure, and the available personnel, a mathematical model is formulated. The 

model contains two objective functions, one of which is a priority, and a system of 

constraints. Using the graphical method of solving linear programming problems and 

the capabilities of MS Excel 2010, the authors successfully applied the sequential 

assignment method to solve multi-criteria problems, and prepared a report for 

consideration by the decision maker. The report contains a solution to the problem for 

different assignment values according to the first criterion and the corresponding 

values of the criteria themselves. 

Ключевые слова: задачи линейного программирования, графический 

метод, задачи многокритериальной оптимизации, метод последовательных 

уступок. 

Keywords: linear programming problems, graphical method, multi-criteria 

optimization problems, sequential assignment method. 
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В различных областях практической деятельности часто встречаются 

задачи, в которых оптимальность некоторой операции приходится оценивать не 

по одному, а сразу по нескольким критериям 
1 2, ,  ...,  nf f f , причем одни из них 

требуется исследовать на максимум, а другие — на минимум. Такого рода задачи 

называют многокритериальными или векторными задачами оптимизации ([1], 

[2]).  

Любой исследователь изначально понимает, что, вообще говоря, не 

существует решения, которое обеспечивало бы в экстремум первому критерию 

1f  и одновременно доставляло бы максимум (или минимум) другому критерию 

2f , тем более тяжело и даже не реально получить такое решение для нескольких 

критериев. В связи с этим логично ввести понятие некоего компромиссного 

решения, при этом окончательный выбор решения по исследуемому вопросу 

предполагается волевым актом командира или лицом, принимающим решение 

(ЛПР). За ЛПР оставляют решение о том, какой ценой можно оплатить известное 

повышение эффективности или наоборот, какой долей эффективности можно 

пожертвовать, чтобы не нести слишком больших потерь. Все эти особенности 

формируют цель исследователя: предоставить в распоряжение ЛПР достаточное 

количество данных, позволяющих ему всесторонне оценить преимущества и 

недостатки каждого варианта решения и, опираясь на них, сделать 

окончательный выбор. В связи с этим, процедура разработки, исследования и 

решения многокритериальной задачи является диалоговой итеративной 

процедурой между ЛПР и машиной (исследователем). 

Основная идея при решении задач векторной или многокритериальной 

оптимизации заключается в получении и обосновании методов определения ком-

промиссных решений. 

Существуют два основных подхода к решению задач векторной оптими-

зации. Первый подход основан на методах свертывания критериев, второй — на 

алгоритмах непосредственного отыскания компромиссных решений. В 
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настоящей работе рассмотрим применение одного из алгоритмов 

непосредственного отыскания компромиссных решений, а именно «метод 

последовательных уступок». 

Постановка задачи. В некоторой воинской части имеется пожарная часть, 

которая имеет в наличии комплекты 2-х видов для пожаротушения и ликвидации 

радиационного заражения (РЗ). В таблице 1 находятся сведения о порядке 

формирования комплектов оборудования (КО) и личным составом (ЛС), наличие 

необходимого оборудования и личного состава.  

 

Таблица 1 − Сведения о порядке формирования и наличии КО и ЛС 

Номер 

комплекта 

Обору-

дование 1 

Обору-

дование 2 

Обору-

дование 3 

Обору-

дование 4 

Личный 

состав 

1 2 1 4 0 10 

2 2 2 0 4 13 

Наличие 12 8 20 12 65 

 

Известно, что комплект вида 1 ликвидирует пожар на площади 2 га за 1 час, 

а комплект вида 2 ликвидирует последствия радиационного заражения на 

площади 3 га за 1 час. При этом в процессе пожаротушения и ликвидации РЗ 

может в течение часа выйти из строя комплект вида 1 с вероятностью 0,2, а 

комплект вида 2 с вероятностью 0,1. Требуется организовать процесс 

пожаротушения и ликвидации РЗ на территории 61 га таким образом, чтобы 

максимизировать площадь, на которой пожар потушен и минимизировать потери 

в оборудовании. Определить за какое время последствия катастрофы на 

указанной площади будут полностью устранены. 

Решение. Обозначим за 
1x  — количество комплектов первого вида, а 

2x  — 

комплектов первого вида. 

Составим первый критерий эффективности, выражающий площадь, на 

которой ликвидирован пожар и РЗ: 
1 1 2 1 2 ( , ) 2 3 .f x x x x= +  
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Составим второй критерий эффективности, выражающий математическое 

ожидание потерь оборудования при ликвидации аварии: 
2 1 2 1 2 ( , ) 0,2 0,1 .f x x x x= +  

Будем считать, первый критерий более важный, тогда векторный критерий 

будет иметь вид  

1 1 2

2 1 2

( , ) max

( , ) min

f x x

f x x

→ 
 

→ 
 

на множестве  





1 1 2 1 2 1 2 1 2

1 2 1 2

( , ) : 2 2 12, 2 8, 4 20, 4 12,

10 13 65, 1, 1 .

z x x x x x x x x

x x x x

= +  +   

+   
 

Первый шаг. Максимизируем первый по важности критерий 
1 1 2( , )f x x  

1 1

1 1 2 1 2max ( , ) max(2 + 3 ).
z z
f x x x x=  

Имеем задачу линейного программирования, где 
1 1 2 1 2( , ) 2 + 3f x x x x=  — 

целевая функция, а 

1 2

1 2

1

2

1 2

1

2

2 2 12,

2 8,

4 20,

4 12,

10 13 65,

1,

1.

x x

x x

x

x

x x

x

x

+ 
 + 






 + 



 

 

— система ограничений. 

Так как целевая функция является функцией двух переменных, то эту задачу 

можно решить графическим методом. Для этого от системы неравенств в системе 

ограничения перейдем к соответствующей системе равенств и построим эти 

прямые в прямоугольной системе координат на плоскости 
1 2Ox x  (рисунок 1).  
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Рисунок 1 − ОДР при решении задачи максимизации первого критерия 

 

Получим многоугольник ABCDEF, точки которого образуют область 

допустимых решений (ОДР). Вектор  2;  3n = указывает направление 

возрастания функции, a – линия уровня, С – точка выхода, в ней функция 

1 1 2 1 2( , ) 2 + 3f x x x x=  достигает максимума, ее координаты C
26 15

; .
7 7

 
 
 

 Коор-

динаты находятся в процессе решения системы уравнений 
1 2

1 2

2 8,

10 13 65.

x x

x x

+ =


+ =
 

Полученное решение не является целочисленным, поэтому требуется найти 

целочисленное решение, близкое к найденному, которое принадлежит ОДР и 

доставляет наибольшее значение целевой функции 
1 1 2( , )f x x . Заметим, что 

банальное округление компонент решения приводит к результату ( )3; 2 , при этом 

значение целевой функции 
1(3, 2) 12f = . Но если продолжить исследование точек 

с целочисленными координатами, близкими к ( )3; 2  из ОДР, то заметим, что 

решение ( )2; 3  даст большее значение целевой функции 
1(2, 3) 13f = . 
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Следовательно, на первом шаге оптимальное решение будет 10 10

1 22, 3,x x= =  а 

значение функции при найденном оптимальном решении  

1 1

1 1 2 1 2 1max ( , ) max(2 + 3 ) (2, 3) 2 2+ 3 3 13.
z z
f x x x x f= = =   =  

Полученное решение подставляем в критерий 
2 1 2( , )f x x  и векторные оценки 

примут вид 
10 10

1 1 2

10 10

2 1 2

13( , )
.

0,7( , )

f x x

f x x

   
=   
  

 

Полученный результат предъявляют ЛПР. Если ЛПР не устраивает первый 

результат (13 га), то ему необходимо пересмотреть постановку задачи. Если же 

ЛПР не устраивает второй результат (0,7), то ему предлагается сделать некото-

рую уступку по первому критерию. 

Второй шаг. Сделаем некоторую уступку по первому критерию 
1 3.f = −  

Следовательно, 
10 10

1 1 2 1 1( , ) (2, 3) 3 10.f x x f f+  = − =  

Минимизируем критерий 
2 1 2( , )f x x : 

2 2
2 1 2 1 2min ( , ) min(0,2 + 0,1 ),

z z
f x x x x=  

где  





2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

( , ) : 2 3 10, 2 2 12, 2 8,

4 20, 4 12, 10 13 65, 1, 1 .

z x x x x x x x x

x x x x x x

= +  +  + 

  +   
 

Заметим, множество 
2
z  получается из множества 

1
z  добавлением еще 

одного условия. На рисунке 2 это множество обозначено ABCDEKL. 
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Рисунок 2 − ОДР при решении задачи максимизации второго критерия 

 

Вектор  0,2;  0,1n =  (или коллинеарный ему  2;  1n = ) указывает 

направление возрастания функции
2 1 2( , )f x x , b − линия уровня. Функция 

2 1 2( , )f x x достигает минимума в точке L (точка входа), L
8

1;  .
3

 
 
 

 Координаты этой 

точки находятся в процессе решения системы уравнений 
1 2

1

2 3 10,

1.

x x

x

+ =


=
 

Анализ целочисленных решений в окрестности точки 
8

1;  
3

 
 
 

 и 

принадлежащих ОДР приводит к оптимальному решению 20 20

1 21, 3.x x= =  

Значение функции при найденном оптимальном решении  

2 2
2 1 2 1 2 2min ( , ) min(0,2 + 0,1 ) (1;3) 0,2 1+ 0,1 3 0,5.

z z
f x x x x f= = =   =  
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Векторные оценки имеют вид 
20 20

1 1 2

20 20

2 1 2

10( , )
.

0,5( , )

f x x

f x x

   
=   
  

 Время, за которое 

последствия катастрофы на указанной площади 61 га будут полностью 

устранены, .,786
9

61
,61

1

61
часtчасt

РЗ
ликвидация

пожара
тушение

===  

Анализируем полученный результат. Если ЛПР полученный результат 

устраивает, то задача решена. Если полученный результат ЛПР не устраивает, то 

диалог продолжается.  

Специалист может рассмотреть ситуации, когда уступка на втором шаге 

будет иметь другие значения, и рассчитать (например, в MS Excel 2010) 

векторные оценки критериев. В нашем случае эти расчеты могут быть 

предоставлены в виде таблицы 2.  

Исходя из результатов таблицы, видно, что при участии одного комплекта 

пожаротушения и трех комплектов для ликвидации РЗ достигается 

максимальное значение площади и минимальное значение математического 

ожидания потерь.  

 

Таблица 2 − Расчет критериев при разных значениях уступки 

Уступка по 1-му 

критерию Значение x1 Значение x2 

Значение 

1-го 

критерия 

Значение 

2-го 

критерия 

3 1 3 10 0,5 

2 1 3 11 0,5 

1 1 3 12 0,5 

0 2 3 13 0,7 

 

Таким образом, следует признать реализованный авторами подход 

удобным, обладающим гибкостью, и не встречающим трудностей в машинной 

реализации (например, с помощью MS Excel 2010 или вручную), специалисту 
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достаточно обладать основами знаний в области методов оптимизации и 

линейного программирования). Предлагаемый подход востребован с 

практической точки зрения, множество задач, для которых предлагаемая 

методика является подходящей, крайне велик.  
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Аннотация. В работе выполнено моделирование распространения лазерных 

лучей с различным поперечным распределением интенсивности в 

слаботурбулентной атмосфере. Турбулентная атмосфера моделировалась с 

помощью фазовых экранов, рассчитываемых на основе алгоритма быстрого 

преобразования Фурье с учетом модифицированного спектра фон Кармана. 

Численно показано преимущество гауссовых пучков для задач, требующих 

высокой стабильности распределения интенсивности и минимальных флуктуаций, 

а также эффективность «top-hat» пучков по сохранению пиковой яркости. 
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Abstract. In this work, we simulated the propagation of laser beams with various 

transverse intensity distributions in a low-turbulent atmosphere. The turbulent 

atmosphere was simulated using phase screens calculated based on the fast Fourier 

transform algorithm taking into account the modified von Karman spectrum. The 

advantage of Gaussian beams for problems requiring high stability of the intensity 

distribution and minimal fluctuations, as well as the effectiveness of «top-hat» beams 

in maintaining peak brightness, are shown numerically. 

Ключевые слова: Фурье преобразование, лазерный луч, турбулентность. 

Keywords: Fourier transform, laser beam, turbulence. 

 

В настоящее время большое внимание уделяется исследованиям в области 

распространения лазерного излучения в атмосфере применительно к задачам 

оптической связи, адаптивной оптики, дистанционного зондирования, систем 

наведения, LIDAR и многих других. В каждом из этих приложений лазерному 

пучку необходимо проделать значительный путь через земную атмосферу, 

которая не является оптически однородной средой – имеются турбулентные 

неоднородности показателя преломления, что приводит к существенным 

искажениям параметров лазерного излучения. 

Искажения проявляются в виде уширения пучка, блуждания центра 

интенсивности, флуктуации интенсивности. Совокупность данных эффектов 

ограничивает эффективность и условия применимости оптических систем. 

Понимание механизмов распространения лазерного излучения в турбулентной 

среде и количественная оценка вызываемых ими искажений являются 

ключевыми проблемами, в частности, при проектировании и разработке 

комплексов «источник излучения – приемник». 

В данной работе проводится сравнительный анализ распространения 

различных профилей лазерных пучков: гауссова пучка (фундаментальная мода 

ТЕМ00), пучка с профилем «top-hat» (равномерной интенсивности) и пучка 

Бесселя (рис. 1), – в условиях слабой атмосферной турбулентности. 
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Сравнительная оценка различных профилей оптических пучков в условиях 

слаботурбулентной атмосферы позволяет выявить как преимущества, так и 

ограничения каждого типа, что особенно важно для целенаправленного выбора 

оптимальных решений в конкретных приложениях. 

Распространение двумерного профиля вдоль выделенного направления 𝑧 в 

свободной от источников зарядов, немагнитной, слабонеоднородной среде, 

в которой неоднородность аппроксимируется фазовыми экранами, описывается 

параксиальным волновым уравнением [1]: 

𝜕𝐴

𝜕𝑧
=

𝑖

2𝑘
∇⊥
2𝐴 + 𝑖𝜑𝐴, 

𝐴 ≡ 𝐴(𝑥, 𝑦, 𝑧), 𝜑 ≡ 𝜑(𝑥, 𝑦, 𝑧), ∇⊥
2  ≡

𝜕2

𝜕𝑥2
+
𝜕2

𝜕𝑦2
, 

(1) 

где 𝐴(𝑥, 𝑦, 𝑧) – комплексная амплитуда поля, 𝑘 = 2𝜋/𝜆–волновое число, 𝜆 –

длина волны, 𝜑(𝑥, 𝑦, 𝑧) – фазовый набег, вносимый фазовыми экранами. 

 

 

а – гауссов тип; б – бесселев тип; в – «top-hat» 

Рис. 1. Двумерные профили интенсивности пучков 

Турбулентная атмосфера моделируется численно с помощью фазовых 

экранов – тонких слоёв, расположенных на пути распространения поля. Фазовые 

экраны вычисляются методом преобразования Фурье. Для численного счёта 

используется алгоритм быстрого преобразования Фурье (БПФ) на основе 
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модифицированного спектра фон Кармана [1, 2]. Их энергетический спектр 

определяется выражением: 

Φ(𝜿) = 0,033 ⋅ 𝐶𝑛
2 ⋅
exp(−𝜅2/𝜅𝑚

2 )

(𝜅2 + 𝜅0
2)11/6

, 

𝜿 ≡ 2𝜋(𝒇𝑥 + 𝒇𝑦), 𝜅𝑚 ≡ 5,92/𝑙0, 𝜅0  ≡ 2𝜋/𝐿0, 

(2) 

где 𝐶𝑛
2 – структурный параметр показателя преломления (имеет размерность 

[𝐿−2/3]), 𝒇𝑥, 𝒇𝑦 –пространственные (Фурье) частоты (волновые числа вдоль 𝑥, 𝑦 

соответственно); 𝜿 – вектор угловых волновых чисел, 𝑙0 – характерный размер 

малых вихрей, 𝐿0–характерный размер крупных вихрей. Типичный фазовый 

экран представлен на рис. 2. 

Для ограниченной по размеру расчетной сетки набегающая в связи с 

турбулентностью оптическая фаза определяется рядом Фурье [1]: 

𝜑(𝑥, 𝑦) = ∑ ∑ 𝑐𝑛,𝑚 exp[2𝜋𝑖(𝑓𝑥𝑛𝑥 + 𝑓𝑦𝑚𝑦)] ,

+∞

𝑚=−∞

+∞

𝑛=−∞

 (3) 

где 𝑓𝑥𝑛 , 𝑓𝑦𝑚– дискретные 𝑥- и y-направленные пространственные частоты (далее 

в работе 𝑓𝑥𝑛 = 𝑓𝑦𝑚 − равноотстоящие узлы сетки), 𝑐𝑛,𝑚– коэффициенты 

разложения в ряд Фурье. 

 

Рис. 2. Типичный фазовый экран 
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В связи с тем, что вариация оптической фазы при распространении в 

атмосферном канале связана с многократным прохождением через независимые 

случайные неоднородности среды, то согласно центральной предельной теореме 

коэффициенты в разложении (3) должны подчиняться нормальному 

распределению. Отметим, что коэффициенты ряда Фурье в общем случае 

комплексны. Вещественная и мнимая части обладают нулевыми первыми 

теоретическими моментами и равными дисперсиями, взаимный корреляционный 

момент вещественных и мнимых частей равен нулю [1, 3]. Следовательно, 

коэффициенты подчиняются общему комплексному нормальному 

распределению с дисперсией, задаваемой как 

〈|𝑐𝑛,𝑚|
2
〉 = Φ(𝑓𝑥𝑛 , 𝑓𝑦𝑛)Δ𝑓𝑥𝑛Δ𝑓𝑦𝑛 = Φ(𝑓𝑥𝑛 , 𝑓𝑦𝑛)Δ𝑓𝑛

2. (4) 

Решение уравнения (1) выполняется согласно следующей схеме: 

𝐴(𝑥, 𝑦, 𝑧 + Δ𝑧) = 𝑁̂ℱ−1 {𝐷̂ℱ{𝑁̂𝐴(𝑥, 𝑦, 𝑧)}}, 

𝐷̂ = exp [−
𝑖𝛥𝑧(𝑘𝑥

2 + 𝑘𝑦
2)

2𝑘
] , 𝑁̂ = exp [𝑖𝜑(𝑥, 𝑦) ⋅

𝛥𝑧

2
], 

(5) 

где  𝑁̂ – оператор турбулентности,  𝐷̂ – оператор дифракции, ℱ−1и ℱ – обратное 

и прямое преобразования Фурье соответственно. 

Для анализа профилей пучков в конце трассы используют следующие 

основные параметры [1, 4–6]. 

Эффективный радиус пучка в конце атмосферного пути (𝑤). Вычисляется 

как второй теоретический момент распределения: 

𝑤 = √
∫ ∫ (𝑥2 + 𝑦2)𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)𝑑𝑥𝑑𝑦

∫ ∫ 𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)𝑑𝑥𝑑𝑦
, 

𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛) = |𝐴(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)|
2
, 

(6) 

где 𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛) – интенсивность лазерного излучения в конце атмосферного 

пути. Интегрирование производится по всей плоскости. 
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Среднеквадратическое отклонение положения центра интенсивности 

(блуждание): 

𝜎𝑟 = √〈(𝑥𝑐 − 〈𝑥𝑐〉)
2 + (𝑦𝑐 − 〈𝑦𝑐〉)

2〉, 

𝑥𝑐 =
∫ ∫ 𝑥𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)𝑑𝑥𝑑𝑦

∫ ∫ 𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)𝑑𝑥𝑑𝑦
, 𝑦𝑐 =

∫ ∫ 𝑦𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)𝑑𝑥𝑑𝑦

∫ ∫ 𝐼(𝑥, 𝑦, 𝑧𝑓𝑖𝑛)𝑑𝑥𝑑𝑦
. 

(7) 

Сцинтилляционный индекс: 

𝜎𝐼
2 =

〈𝐼2〉 − 〈𝐼〉2

〈𝐼〉2
. (8) 

Коэффициент Штреля – отношение максимальной интенсивности в 

турбулентном распространении 𝐼(𝑥, 𝑦, 𝑧𝑓) к максимальной интенсивности при 

распространении в вакууме 𝐼𝑖𝑑(𝑥, 𝑦, 𝑧𝑓) 

𝑆 =
max{𝐼(𝑥, 𝑦, 𝑧𝑓)}

max{𝐼𝑖𝑑(𝑥, 𝑦, 𝑧𝑓)}
. (9) 

Для сравнительного анализа было проведено моделирование 

вышеописанным методом распространения лазерных пучков трёх различных 

профилей, приведенных на рис. 1. Первоначальные радиусы пучков 7 мм, 𝐶𝑛
2 =

10−15м−2/3; 𝑙0 = 1 мм, 𝐿0 = 30 м. Размер вычислительной области (фазовых 

экранов) 𝐿 = 50 см; длина волны излучения 𝜆 = 1550 нм. Результаты 

моделирования показаны на рис. 3. 

Таблица 1. Начальные и рассчитанные характеристики лазерных пучков 

различных профилей, прошедших через атмосферу 

Тип пучка: Гауссов Беcселев «top-hat» 

Первоначальный 

характерный размер, мм 

7 12 7 

Эффективный радиус, мм 36.5 14.5 83.5 

Блуждание, мм 2 3 2 

Сцинтилляционный индекс 0.1253 0.5484 0.2722 

Коэффициент Штреля 0.9758 0.9746 0.9980 
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Из данных таблицы 1 и результатов моделирования видно, что гауссов пучок 

демонстрирует наименьший уровень флуктуаций интенсивности, что согласуется с 

его локализованной пространственной структурой и устойчивостью к 

мелкомасштабным возмущениям. Сцинтилляционный индекс для гауссова пучка 

составляет ~ 0.125, что существенно ниже, чем у других исследуемых профилей. 

При этом блуждание центра пучка составляет порядка 2 мм, а коэффициент Штреля 

сохраняется на уровне 0.976, указывая на незначительные потери когерентности 

при распространении в турбулентной атмосфере. 

  

а) б) 

 

в) 

а – гауссов; б – бесселев; в – «top-hat» 

Рис. 3. Двумерные профили распределения интенсивности прошедших 

через атмосферный канал пучков 
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Бесселев пучок, несмотря на известные свойства самовосстановления, в 

данной конфигурации продемонстрировал наибольшее блуждание центра – 

порядка 3 мм, а также самый высокий уровень флуктуаций интенсивности с 

индексом сцинтилляции около 0.548. Это связано с выраженной кольцевой 

структурой и особенностями распределения энергии, при которых пучок 

взаимодействует с большей областью турбулентной среды. При этом 

коэффициент Штреля остаётся высоким (около 0.975), что свидетельствует о 

сохранении пиковой интенсивности. Важно отметить, что для бесселевого пучка 

начальный и конечный размеры оценивались по положению первого минимума 

и первого кольца, то есть с учётом всей центральной структуры. Такой подход 

отражает тот факт, что бесселев пучок в представленных условиях эффективно 

занимает всю апертуру численного окна. Эффективный радиус в финальной 

точке также был рассчитан аналогично и составляет порядка 1.45 см, что 

сопоставимо с половиной размера расчетной сетки. Тем не менее, из-за природы 

бесселевых пучков параметр эффективного радиуса имеет ограниченную 

интерпретацию, и в задачах пространственной локализации могут быть более 

уместны альтернативные метрики, например, FWHM центрального максимума. 

Профиль типа «top-hat» продемонстрировал наилучшее сохранение 

пикового значения интенсивности, что подтверждается коэффициентом Штреля, 

почти равным единице, и малым блужданием центра (~2 мм). При этом уровень 

флуктуаций интенсивности оказался промежуточным – около 0.272, что 

объясняется резкой фронтальной границей пучка и более высокой 

чувствительностью к дифракционному расширению. Эффективный радиус «top-

hat» пучка в конце распространения значительно превышает таковой у других 

профилей, что также видно на графиках интенсивности (рис. 3). 

Таким образом, полученные результаты указывают на преимущества 

гауссовых пучков в задачах, требующих высокой стабильности распределения 

интенсивности и минимальных флуктуаций, а также неэффективность «top-hat» 

пучков в условиях, где критично сохранение пиковой яркости. Бесселевы пучки, 
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несмотря на сохранение центра интенсивности, показали чувствительность к 

турбулентным возмущениям, что ограничивает их применимость в системах с 

выраженными требованиями к однородности распределения в условиях 

атмосферной турбулентности. 
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В современной нефтегазовой промышленности создание высоко 

проводимых трещин в нефтяных и газовых пластах является основным методом 

повышения эффективности добычи нефти. Для этого в нефтяной пласт вводят 

специальный расклинивающий раствор под высоким давлением через 

перфорационные отверстия. Этот процесс приводит к образованию трещин в 

пласте. В работе рассматривается задача определения точек инициации трещин 

гидроразрыва пласта (ГРП) с помощью спектрального анализа данных устьевых 

датчиков давления.  

При эксплуатации горизонтальных нефтяных скважин с применением 

технологии многостадийного гидроразрыва пласта (МГРП) с течением времени 

возникает необходимость оживления ставших малопродуктивными скважин. 

При этом часто применяется технология «слепого гидроразрыва», когда в 

скважину под большим давлением нагнетается расклинивающий раствор, какие-

то из старых трещин при этом активируются. Возникают вопросы: как 

определить, какие из трещин активированы? Не следует ли провести 

дополнительные закачки раствора? Устанавливать контролирующие приборы на 

большой глубине в стволе скважины, если даже возможно, то получить с них 

оперативную информацию не удается, т.к. необходимо поднять приборы на 

поверхность. Доступным методом контроля является измерение давления на 

устье скважины. Теоретические работы [1] – [5] дают информацию, что 

гидроудар (хаммер – эффект), наблюдаемый при остановке закачки жидкости 

разрыва, при остановке насосов может быть использован для диагностики 

трещин ГРП. Быстро затухающие колебания давления (примерно 30 – 40 секунд) 

с периодичностью 8 – 10 секунд в совокупности с более мелкими фиксируемыми 

колебаниями при анализе позволяют определить успешность проведенной 

операции ГРП.  

На Рис. 1 показана схема ГРП на горизонтальной скважине, а на Рис.3 

схема многостадийного гидроразрыва пласта (МГРП), когда перпендикулярно 
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оси скважине создается не одна трещина, а целая сеть высокопроизводительных 

трещин.  

В работе основное внимание уделяется методам предсказания геометрии 

трещины. Рассматриваются подходы, основанные на использовании 

искусственного интеллекта и математических методов, таких как применение 

кепстра, интерполяции и различных методов преобразования сигналов. В рамках 

исследования выполнены эксперименты по преобразованию и очистке данных 

от шумов. Поставлены и проведены различные эксперименты для улучшения 

точности обработки данных и разработки эффективных подходов к 

интерпретации сигналов. 

 

Рис. 1 Гидроразрыв пласта. Горизонтальная скважина.  

Вертикальная трещина, перпендикулярная оси скважины. 

Изучение характеристик процесса ГРП с использованием анализа 

различных данных (например, использование данных с датчика устьевого 

давление) является одной из рассматриваемых тем. Из интересных работ можно 

отметить работу [6], в которой описан метод MWF, позволяющий отслеживать 

эффективность ГРП с использованием обработки сигналов. Анализ хаммера 

происходит с применением обратного преобразование Фурье от логарифма 
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спектра сигнала. Такое преобразование называют кепстральным. Слово «кепстр» 

образовано перестановкой букв в слове «спектр» и стало использоваться при 

обработке сигналов [7]   Методы кепстрального анализа применяется в данной 

работе.  

Также можно выделить работу Shijie Deng, Liangping Yi [8], в которой 

также описываются методы обработки сигналов ГРП, в особенности с 

применением вейвлет фильтров, которые позволяют разделить хаммер на сумму 

частот, для того чтобы избавить от высокочастотных частот. Данный подход 

также использовался для анализа сигналов в данной работе.  

Не так давно (в 2024) в работе [9] были упомянуты попытки оценить, 

являются ли сигнальные характеристики (хаммеры), а также другие параметры 

ГРП информативными для использования их признаков для методов 

прогнозирования с использованием Машинного обучения.  

Данные, снятые с высокочастотных датчиков, являются идеальными. А 

именно, встречаются различные помехи, обрывы и шумы в данных, которые 

могут повлиять на результаты анализа (Рис.2).  

Для решения этой проблемы применяют методы очистки и предобработки 

данных, которые могут помочь выделить желательные компоненты сигнала, а 

также подавить нежелательные (разрывы, шумы и тд). 

 

Рис. 2 Пример зашумленных данных 
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В исходных данных как раз имелись 2 проблемы – пропуски в данных (т.е. 

они были не равномерными по времени), а также, как видно на Рис. 2 – 

присутствовали шумы.  

Для того, чтобы убрать пропуски, было решено использовать методы 

интерполяции. Чтобы убрать шумы, были опробованы различные фильтры для 

очистки сигнала. Для использования этих методов выбран язык 

программирования Python. Было проведено сравнение различных методов, были 

выбраны три метода из библиотеки SciPy: CubicSpline, Akima1Dinterpolator, 

PchipInterpolator. Для очистки данных от шумов были использованы различные 

реализации фильтров на языке Python: скользящее среднее, медианный фильтр, 

экспоненциальное бегущее среднее, скользящее среднее + медианный фильтр, 

Фильтр Калмана. 

Для дальнейшей обработки сигнала был использован вейвлет – анализ. 

Сигнал раскладывается на набор частот и остатка, сумма которых равна нашему 

сигналу. А значит, после разложения мы можем «выкинуть» «шумные» частоты, 

тем самым оставив только полезный для нас сигнал.  

На Рис. 3 можем заметить, что наш сигнал раскладывается на 10 частот и 

остаток. Первые 3-4 частоты можно убрать, так как по график видно, что они 

«зашумленные».  
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Рис. 3 Разложение нашего исходного зашумленного сигнала на частоты при 

помощи вейвлет преобразований 

 

Следующей процедурой обработки сигнала является кепстральный анализ: 

вычисляется преобразование Фурье, берется логарифм образа и вычисляется 

обратное преобразование Фурье. В результате мы получаем кривую, на которой 

пики (максимумы, минимумы) соответствуют различным событиям в стволе 

скважины: изменение диаметра труб, НКТ, утечки, муфты дают отраженный 

сигнал. Зная геометрию скважины, мы определяем скорость волны (скорость 

звука в скважине) и приблизительно можем определить точки инициации 

трещин ГРП. Если расстояние между точками возможной инициации более 50 

метров, метод дает неплохие результаты.  
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Рис. 4 Сравнение кепстров до очистки хаммера и после применения вейвлет – 

анализа и различных методов интерполяции 

 

Для моделирования основного сигнала при ГРП была использована функция 

вида: 

𝑦(𝑡) = 𝐴𝑒−τ𝑡 cos(𝜔𝑡 + 𝜙) +  Q𝑒−𝑝𝑡 + D      (1) 

где А – амплитуда, τ – постоянная затухания синусоиды, ω – угловая частота или 

скорость изменения угла колебаний, φ – фазовый угол при t=0, используемый 

для сдвига функции в целях соответствия начальным условиям данных. 

Коэффициенты Q, p и D - дополнительные параметры для лучшей 

аппроксимации. 

Нахождение неизвестных коэффициентов было сделано с помощью метода 

наименьших квадратов, реализованного в библиотеке scipy на языке Python.  

На основе экспериментальных данных был собран датасет из 90 хаммер-

эффектов, в котором для каждого хаммера имелись данные: тип ГРП (замещение, 

мини, ОГРП), НКТ, верхняя и нижняя перфорация, номер скважины, время 

хаммера, значения давления. Были применены методы интерполяции, вейвлет - 

очистки, каждому очищенному хаммеры были найдены коэффициенты для 

кривой.  

Перед поиском корреляции из датасета коэффициентов были выкинуты 

выбросы, а именно строки данных, в которых значения коэффициентов 

выбивались из среднего значения, для этого визуально оценивались данные при 
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помощи гистограммы, построенной библиотекой seaborn методом displot (Рис.5). 

Построен график scatter plot, на котором визуально можно оценить зависимость 

данных между друг другом. В конечном итоге, наибольшая зависимость 

геометрии трещины с коэффициента была выявлена только с коэффициентами ω 

и τ, диаграмма и численные значения корреляции изображены на рисунках 6 (а-

б). 

 

 Рис. 5 Гистограмма для коэффициента φ. Виден выброс, который может 

исказить информацию о его корреляции с перфорацией.  

 

Численное значение корреляции равно -0.69, а также p-value равно 4.965e-

11, то есть, оно меньше 0.05, что говорит о том, что мы можем отвергнуть 

нулевую гипотезу, и говорить о том, что значение этой корреляции 

статистически значима. С другими коэффициентами корреляции не было 

обнаружено. 
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Рис. 6(а) Scatter plot для данных ω, τ и нижней перфорации 

 

 

Рис. 6(б) Численные значения корреляций для данных коэффициентов и 

геометрии трещины 

На данном этапе были получены коэффициенты кривой (1) к хаммер-

эффектам в количестве 90. Проведен анализ этих коэффициентов, очищенные 

выбросы. Было выявлено, что коэффициент ω имеет линейную зависимость от 

размера перфорации трещины. 

Работа была продолжена с показаниями датчиков давления во время ГРП 

и рассмотрены другие параметры ГРП, которые имеются в отчетах.  
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В нашей базе имелось было 168 отчетов по ГРП с различных 

месторождений. Сложность автоматического сбора была в том, что отчеты 

имели разный формат. Поэтому сбор данных осуществлялся вручную.  

Были собраны следующие параметры: тип ГРП (замещение, мини ГРП, 

ОГРП), ISIP, эффективность жидкости, давление закрытие устье, давление 

закрытие забой, потери давление на трение, градиент разрыва, азимут, общий 

объем закаченной жидкости, давление начальное, давление конечное, давление 

среднее, перфорация верхняя\нижняя, НКТ, разность между 1 и последним 

портом скважины. 

В связи с разными форматами отчетов, не все параметры для каждой 

скважины удалось собрать. Поэтому в датасете присутствует различное 

количество пропусков по параметрам: ISIP – 13, эффективность жидкости – 110, 

давление закрытия устье – 109, давление устье забой - 139, азимут – 129, градиент 

разрыва – 144, давление начальное\конечное – 67. Можно заметить, что 

некоторые параметры имеют больше половины пропусков, мы не обращали на 

них сильного влияние, но ниже по ним будет построения матрица корреляций.  

На Рис. 7 приведена тепловая карта корреляции Пирсона параметров 

между друг другом.  

 

Рис. 7 Heatmap корреляции Пирсона между собранными параметрами 
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Обратив внимание на корреляцию данных с верхней перфорацией 

(perf_up) по абсолютному значению можно выделить ISIP, начальное давление, 

среднее давление и конечное давление. Остальные заметные по корреляции 

параметры не были выделены в связи большого количества в них пропусков (то 

есть, не репрезентативностью).  

Ниже на Рис. 8 (а-б) приведены Scatter plots и численное значение 

корреляции выделенных параметров и нижней перфорации.  

Проведен статистический тест, в рамках которого была посчитана 

корреляция Спирмана, Пирсона и Кендала между вышеперечисленными 

параметрами, и оценена p-value для каждого из них. В качестве α было взято 

значение 0.05, выше которого мы отклоняли нулевую гипотезу о том, что 

корреляции нет. Таком образом, вычисляли статистически значимые 

корреляции. 

 

Рис. 8 (а) Pairplot зависимости ISIP, начального\среднего\конечного давления и 

верхней перфорации. Оранжевым выделены значения на ОГРП, синим – на 

замещении.  
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Рис. 8 (б) Численное значение зависимости ISIP, начального\среднего\конечного 

давления и верхней перфорации.  

 

Этот результат наталкивает на мысль, что с увеличением количества 

данных есть вероятность того, что мы сможем наблюдать корреляцию 

перфорации скважины с ISIP, а также с начального, среднего и конечно давления 

после ГРП.  

Помимо вышесказанного, была проделана работа по сопоставлению 

графиков кепстра и хаммер-эффекта, для нахождения «интересных точек». 

Сопоставив графики хаммер-эффекта и кепстра после очистки от шумов, а 

также используя информацию о конструкции скважины, становится возможно 

определить скорость распространения звуковой волны и обнаружить точки 

инициации трещины при проведении повторного ГРП. 

 

 

Рис. 9 Анализ хаммер-эффекта. 
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Для наилучшего результата требуется запись с высокочастотного датчика 

давления с характеристиками порядка 100Гц. 

Ведется исследовательская работа по уточнению модели определения 

точек образования трещин, для чего требуется большой объем практических 

данных. 

В этой части работы было обработано 168 скважин, с которых были 

собраны различные параметры после ГРП. В связи с различными форматами 

отчета, в данных было значительное количество пропусков по различным 

параметрам, поэтому были проанализированы ISIP, начальное\среднее\конечное 

давление. Анализ и статистические тесты показали, что на небольшом 

количестве данных видна численная и визуальная корреляция этих параметров с 

перфорацией скважины. Для уточнения данных требуется увеличения данных и 

создание более репрезентативной выборки. 
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Abstract. The article is devoted to the development of an automated control 

system for sawmill equipment in order to maximize the economic effect of using sawn 

timber by rationally distributing it between different types of equipment. 
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Автоматизированная система управления (АСУ) лесопильным 

оборудованием представляет собой комплекс технических и программных 

средств, направленных на повышение эффективности производства за счет 

оптимизации процессов распиловки древесины [1-3]. Рассмотрим архитектуру 

АСУ на конкретном примере с использованием цифровых показателей из 

предоставленного материала. 

Целью разработки АСУ является максимизация экономического эффекта 

от использования пиловочного сырья путем его рационального распределения 

между различными типами оборудования. В качестве примера рассмотрим 

партию сырья объемом 100 000 м3, разделенную на 4 размерные группы: 

диаметром 16 см (20%), 22 см (50%), 28 см (20%) и 32 см (10%). 

Основные компоненты АСУ. 

Сенсоры. Сенсоры обеспечивают сбор данных о параметрах сырья и 

состоянии оборудования [2, 4]. Для рассматриваемого примера используются 

следующие датчики: 

–лазерные датчики (измеряют диаметр бревен в пределах от 16 до 32 см, 

точность измерений составляет ±1 мм);  

– камеры машинного зрения (анализируют форму бревен и выявляют 

дефекты поверхности, обрабатывают данные со скоростью 100 бревен в минуту);  
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– датчики производительности (отслеживают объем переработанной 

древесины. Например, оборудование №1 обрабатывает 60 000 м3/год для бревен 

диаметром 16 см);  

– температурные датчики (контролируют нагрев режущих инструментов, 

предотвращая перегрев выше 80°C). 

Контроллеры. Контроллеры обрабатывают данные, поступающие от 

сенсоров, и формируют управляющие сигналы [4]. В примере используются три 

типа оборудования: 

– оборудование №1 (капитальные затраты: 4600 тыс. руб.; 

эксплуатационные затраты (CF): 7500 тыс. руб./год; срок службы: 10 лет; 

эквивалентный аннуитет (EA) при ставке дисконтирования 10%: 7094 тыс. 

руб./год); 

– оборудование №2 (капитальные затраты: 4200 тыс. руб.; 

эксплуатационные затраты (CF): 6500 тыс. руб./год; срок службы: 10 лет; 

эквивалентный аннуитет (EA): 6178 тыс. руб./год); 

– оборудование №3 (капитальные затраты: 4500 тыс. руб.; 

эксплуатационные затраты (CF): 6000 тыс. руб./год; срок службы: 10 лет.; 

эквивалентный аннуитет (EA): 5790 тыс. руб./год). 

Исполнительные механизмы. Исполнительные механизмы реализуют 

управляющие воздействия. Для рассматриваемого примера: 

– электродвигатели (управляют подачей бревен со скоростью до 60 м/мин; 

обеспечивают точность позиционирования ±0.5 мм); 

– гидравлические приводы (перемещают зажимы для фиксации бревен с 

усилием до 5 тонн; обеспечивают время срабатывания менее 0,5 секунд); 

– роботизированные манипуляторы (загружают бревна на оборудование со 

скоростью 15 штук в минуту; сортируют готовые пиломатериалы с точностью 

99.9%). 
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Архитектура АСУ строится по многоуровневому принципу: 

1. Нижний уровень (сенсорный уровень): 

–лазерные датчики передают данные о диаметре бревен на средний 

уровень через интерфейс Modbus; 

– температурные датчики отправляют данные о нагреве режущих 

инструментов каждые 10 секунд. 

2. Средний уровень (контроллерный уровень): 

– контроллеры обрабатывают данные и формируют управляющие сигналы. 

Например, для оборудования №1 рассчитывается оптимальная скорость подачи 

бревен диаметром 16 см (60 м/мин). 

3. Верхний уровень (операторский уровень): 

– SCADA–система отображает данные о производительности каждого 

типа оборудования в реальном времени. Например, оператор видит, что 

оборудование №1 обрабатывает 60 000 куб. м/год для бревен диаметром 16 см. 

Программное обеспечение включает: 

1) базы данных –хранят информацию о распределении сырья: 20 000 куб. 

м для бревен диаметром 16 см, 50 000 куб. м для бревен диаметром 22 см и т.д.; 

2) алгоритмы оптимизации –рассчитывают максимальный экономический 

эффект. Например, для партии сырья объемом 100 000 куб. м экономический 

эффект составляет 172 730 тыс. руб. 

3) системы мониторинга – предупреждают о возможных сбоях 

оборудования. Например, температурный датчик генерирует сигнал тревоги при 

нагреве режущего инструмента выше 80°C. 

На основе данных из таблиц, представленных в пункте 2.4, распределение 

сырья производится следующим образом: 

–бревна диаметром 16 см (20 000 куб. м) обрабатываются только на 

оборудовании №1; 

–бревна диаметром 22 см (50 000 куб. м) – только на оборудовании №2; 
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–бревна диаметром 28 см (20 000 куб. м) и 32 см (10 000 куб. м) – только 

на оборудовании №3. 

Экономический эффект для бревен диаметром 16 см стоимость сырья 

составляет 24 035 тыс. руб., что на 20% выше исходной цены, а для бревен 

диаметром 32 см стоимость сырья увеличивается на 73%, достигая 17 273 тыс. 

руб. 

Таким образом, разработанная архитектура АСУ обеспечивает 

рациональное распределение пиловочного сырья между оборудованием, что 

позволяет достичь максимальной производительности и экономической 

эффективности. Например, для партии сырья объемом 100 000 м3экономический 

эффект составил 172 730 тыс. руб. Такая система становится неотъемлемым 

инструментом для предприятий, стремящихся к лидерству в своей отрасли. 

На основе предоставленной выше информации и теоретического описания, 

разработали алгоритм программы для автоматизации управления лесопильным 

оборудованием. Алгоритм будет включать шаги для расчета оптимального 

распределения сырья между оборудованием и максимизации экономического 

эффекта. 

Алгоритм программы состоит: 

1. Ввод данных 

Программа начинается с загрузки входных данных. Эти данные могут быть 

либо жестко закодированы в программе, либо введены пользователем через 

графический интерфейс (GUI). 

Шаг 1.1. Размерные группы сырья 

Определить количество размерных групп 𝑛. 

Для каждой группы задать: 

Диаметр бревен (𝑑𝑖). 

Долю в общем объеме сырья (𝑑𝑖), где ∑ 𝑑𝑖
𝑛
𝑖=1 = 1. 

Шаг 1.2. Характеристики оборудования 

Определить количество типов оборудования 𝑚. 
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Для каждого типа оборудования задать: 

Капитальные затраты (𝐼0). 

Эксплуатационные затраты (𝐶𝐹). 

Срок службы (𝑇). 

Годовую производительность (П𝑖𝑗) для каждой размерной группы. 

Выход пиломатериалов (𝑟𝑖𝑗) для каждой размерной группы. 

Шаг 1.3. Общий объем сырья 

Задать общий объем сырья 𝑄 (куб. м). 

Шаг 1.4. Цена пиломатериалов 

Задать цену пиломатериалов (𝑃ПМ) в руб./куб. м. 

2. Подготовка данных для оптимизации 

Программа преобразует входные данные в формат, подходящий для 

решения задачи линейного программирования. 

Шаг 2.1. Расчет эквивалентного аннуитета. Для каждого типа 

оборудования рассчитать эквивалентный аннуитет (𝐸𝐴𝑗)по формуле (1): 

            𝐸𝐴𝑗 = 𝐼0 ⋅
𝑘⋅(1+𝑘)𝑇

(1+𝑘)𝑇−1
+ 𝐶𝐹     (1) 

где 𝐼0– капитальные затраты на оборудование (тыс. руб.), 

𝑘– ставка дисконтирования (например, 10% или 0,10)., 

𝑇– срок службы оборудования (лет), 

𝐶𝐹– эксплуатационные затраты (тыс. руб./год). 

Шаг 2.2. Формирование переменных. Обозначить переменные 𝑥𝑖𝑗– доли 

сырья из группы 𝑖, распиливаемого на оборудовании типа 𝑗. Количество 

переменных равно 𝑛 ×𝑚. 
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3. Формулировка целевой функции 

Целевая функция максимизирует экономический эффект от использования 

сырья по формуле (2): 

 

Э =∑∑(П𝑖𝑗 ⋅ 𝑥𝑖𝑗 ⋅ 𝑟𝑖𝑗 ⋅ 𝑃ПМ − 𝐸𝐴𝑗 ⋅∑𝑥𝑖𝑗

𝑛

𝑖=1

)

𝑚

𝑗=1

𝑛

𝑖=1

 
 

(2) 

 

где 𝑃ПМ– цена пиломатериалов (руб./куб. м), 

𝐸𝐴𝑗– эквивалентный аннуитет для оборудования типа 𝑗 (тыс. руб./год). 

Kij – количество времени работы оборудования ij при распиловке сырья из 

группы i, лет, 

РПМ – стоимость 1 м3 пиломатериалов, тыс. руб.; 

РПЛ– стоимость 1 куб. м пиловочника, тыс. руб.; 

Q – объём партии сырья, м3. 

Программа преобразует эту функцию в минимизируемую форму для 

использования в библиотеке scipy.optimize.linprog: 

Минимизировать: − Э 

4. Формулировка ограничений 

Программа учитывает следующие ограничения: 

Ограничение 1. Распределение сырья. Для каждой размерной группы 𝑖 

суммарная доля сырья, распиливаемого на всех типах оборудования, должна 

быть равна доле этой группы в общем объеме сырья по формуле (3): 

 

∑𝑥𝑖𝑗

𝑚

𝑗=1

= 𝑑𝑖 , ∀𝑖 = 1,… , 𝑛                                    (3) 
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Ограничение 2. Производственные ограничения. Объем сырья, 

распиливаемого на каждом типе оборудования, не должен превышать его 

годовую производительность по формуле (4): 

∑𝑥𝑖𝑗

𝑛

𝑖=1

⋅ 𝑄 ≤ П𝑖𝑗 , ∀𝑗 = 1,… ,𝑚                                  (4) 

Ограничение 3. Неотрицательность переменных. Все переменные 𝑥𝑖𝑗 

должны быть неотрицательными: 

$$x_{ij} \geq 0,\quad\forall i = 1,\ldots,n,\text{\:\,}\forall j = 1,\ldots,m$$ 

5. Решение задачи оптимизации 

Программа использует метод линейного программирования для решения 

задачи. Шаги: 

Шаг 5.1. Преобразование данных. Преобразовать целевую функцию и 

ограничения в матричный формат, подходящий для scipy.optimize.linprog. 

Шаг 5.2. Вызов оптимизатора. Использовать функцию linprog для поиска 

оптимального решения: 

result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs') 

где 𝑐– коэффициенты целевой функции, 

𝐴𝑒𝑞 и 𝑏𝑒𝑞– матрица и вектор для равенств, 

𝑏𝑜𝑢𝑛𝑑𝑠– границы для переменных. 

6. Анализ результатов 

Программа анализирует результаты оптимизации: 

Шаг 6.1. Проверка успешности. Если решение найдено успешно 

(𝑟𝑒𝑠𝑢𝑙𝑡. 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑇𝑟𝑢𝑒): 

Вывести оптимальное распределение сырья (𝑥𝑖𝑗). 

Рассчитать максимальный экономический эффект ( ). 

Если решение не найдено: 

Вывести сообщение об ошибке. 
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Шаг 6.2. Интерпретация результатов 

Определить, какое оборудование должно использоваться для каждой 

размерной группы. 

Рассчитать стоимость сырья для каждой группы (дифференцированные 

цены). 

7. Вывод результатов 

Программа выводит результаты в удобном для пользователя формате: 

Через консоль или графический интерфейс (GUI). 

В виде таблицы с распределением сырья и экономическими показателями. 

Пример работы алгоритма 

Ввод данных: 

Размерные группы: диаметры 16, 22, 28, 32 см с долями 20%, 50%, 20%, 

10%. 

Три типа оборудования с характеристиками (производительность, выход 

пиломатериалов, затраты). 

Расчет эквивалентного аннуитета: 

Для оборудования №1: 𝐸𝐴1 = 7094 тыс. руб./год. 

Формулировка целевой функции и ограничений: 

Целевая функция: максимизация экономического эффекта. 

Ограничения: распределение сырья, производственные ограничения. 

Решение задачи: 

Программа находит оптимальное распределение сырья. 

Вывод результатов: 

Оптимальное распределение: 

Группа 1: только на оборудовании №1. 

Группа 2: только на оборудовании №2. 

Группы 3 и 4: только на оборудовании №3. 

Максимальный экономический эффект: Э = 𝑋 тыс. руб. 
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Таким образом, алгоритм программы позволяет эффективно решать задачу 

распределения пиловочного сырья между различными типами оборудования. Он 

основан на методологии линейного программирования и учитывает все 

ключевые параметры производства. 
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Аннотация. В условиях санкций, лесозаготовительные компании 

столкнулись с проблематикой обновления и ремонта парка лесозаготовительной 

техники. В работе приведены результаты исследования работы харвестера на 

базе гусеничного экскаватора SANY SY245F с харвестерной головкой 

WARATAH H480С в условиях АО «КЛПХ» (Республика Карелия) в зимний и 

летний периоды времени года. Анализ показал, что машины подобного класса 

можно, с учетом особенностей их конструкции и эксплуатации, рекомендовать к 

использованию на предприятиях лесного комплекса России в условиях 

сохранения санкций. 
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Abstract. In the conditions of sanctions, logging companies faced the problem 

of renewal and repair of the fleet of logging equipment. The paper presents the results 

of the study of harvester operation on the basis of crawler excavator SANY SY245F 

with harvester head WARATAH H480C in the conditions of JSC “KLPH” (Republic 

of Karelia) in winter and summer seasons. The analysis has shown that machines of 

this class can be recommended for use at the enterprises of the forestry complex of 

Russia under the conditions of sanctions preservation, taking into account the features 

of their design and operation. 

Ключевые слова: харвестер на базе гусеничного экскаватора, 

эффективность, производительность, зимний и летний температурный режим. 

Keywords: harvester based on crawler excavator, efficiency, productivity, 

winter and summer temperature conditions. 

 

В настоящее время, в условиях санкций, лесозаготовительные компании 

столкнулись с проблематикой обновления и ремонта парка лесозаготовительной 

техники [1]. На рынке, в основном, представлена продукция белорусской 

компании «АМКОДОР» [2], существует возможность приобретения 

поддержанных машин «традиционных» производителей John Deere, Ponsse, 

Komatsu и т.д., так же есть возможность прибрести технику по параллельному 

импорту [1]. Стоит отметить ограниченное сохранение производства, в основном 

гусеничных машин отечественного производства, кроме этого, 

предпринимаются усилия по организации производства колесных форвардеров 

и харвестерных головок [1, 3-5]. В то же время, ограниченный мелкосерийный 

объем выпуска этой техники, в силу разных причин (невысокое значение 

коэффициента технической готовности, отсутствие компетенций в производстве 

высокотехнологичного оборудования для сортиментной заготовки и т.д.), не в 

состоянии удовлетворить спрос потребителей.  

В этих условиях, на наш рынок вышла техника китайского производства. 

В основном это харвестеры на базе гусеничных экскаваторов (Xuvol, LiuGong, 
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SANY и т.д.). Появилась информация об опытной эксплуатации форвардера 

китайского производства и совместном производстве технологического 

оборудования [6], в частности, харвестерных головок [7]. 

В рамках вышеизложенного, проведены исследования работы харвестера 

на базе гусеничного экскаватора SANY SY245F с харвестерной головкой 

WARATAH H480С в условиях АО «КЛПХ» (Республика Карелия) [8, 9]. 

Хронометражные наблюдения проводились в зимний и летний периоды времени 

года.  

Средний объём хлыста (Vхл) в летний период времени равен 0,29 м3, зимой 

– 0,22 м3. Лето (июнь), дневная средняя температура воздуха составляла  

+ 20 градусов Цельсия, ночью – +11. Лесосека расположена в Кондопожском 

центральном лесничестве, Лижемском урочище, 132 квартал, 38 выдел. Вид 

рубки: сплошная; породный состав: 8Е2Б+С,Ос; средний запас древесины  

– 169 м3/га. 

Зимой наблюдения проводились в феврале, средняя температура днем 

составляла: – 8 градусов Цельсия, ночью, соответственно: – 13. Лесосека 

расположена в Кондопожском центральном лесничестве, Сандальском урочище, 

109 квартал, 2,7 выдела. Вид рубки: сплошная; породный состав: 

5Е4Б1Ос+С+Ос; средний запас древесины – 160 м3/га. 

На основе хронометражных наблюдений проведен расчет сменной 

производительности гусеничного харвестера согласно методике, 

представленной в работах [10, 11]. Результаты анализа среднего значения 

производительности представлены на рис. 1. 
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Рисунок 1. Сменная производительность харвестера на базе гусеничного 

экскаватора SANY SY245F в летнее и зимнее время года 

 

Анализ показал, что средняя сменная производительность (Псм) харвестера 

на базе гусеничного экскаватора SANY SY245F зимой превышает Псм летом в 1,5 

раза, несмотря на то, что Vхл летом выше. Это обусловлено тем, что летом из-за 

перегрева масла в гидравлической системе оператор вынужден был делать 

перерывы в работе для его охлаждения. В результате, это существенно сказалось 

на производительности харвестера.  

Оценка работы машины в летнее и зимнее время года показала, что при 

нивелировании этих простоев Псм харвестера будет практически идентична 

производительности зимой, несмотря на то, что летом средний Vхл выше в 1,32 

раза объема хлыста зимой. Это может быть обусловлено опытом оператора или 

другими субъективными факторами и требует проведения дальнейших 

исследований. 

Анализ показал, что в условиях проведенного исследования для 

повышения эффективности харвестера на базе гусеничного экскаватора SANY 

SY245F в безморозный период времени года необходимо решить общеизвестную 

проблему перегрева масла в гидравлической системе: оптимизировать систему 

охлаждения гидравлической системы в процессе предпродажной подготовки или 

непосредственно на предприятии (установка дополнительных вентиляторов и 
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радиаторов охлаждения гидросистемы, организация пассивного охлаждения, 

ежедневная чистка элементов охлаждающей системы и улучшение защиты сот 

радиатора от опилок и мусора). Необходимо отметить, что подобная 

проблематика свойственна всем гусеничным харвестерам на базе экскаватора, и 

крупные компании, занимающиеся продажей подобной техники, как правило, 

проводят ее подготовку для работы в сложных природно-производственных 

условиях. 

В работе [12] отмечаются и другие особенности харвестера на базе 

гусеничного экскаватора SANY SY245F: повышенный расход топлива, 

недостаточная защита остекления кабины, а также проблемы с запасными 

частями. В то же время, простота конструкции базовой машины, достаточно 

хорошая производительность и доступность, позволяют рекомендовать 

использование этой машины и подобных харвестеров на базе экскаваторов, с 

учетом особенностей их конструкции и эксплуатации, на предприятиях лесного 

комплекса России в условиях сохранения санкций. 
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Аннотация. В данной статье рассматривается метод шифрования, 

основанный на числах Бернулли. Приводится математическое описание метода, 

включая рекуррентные соотношения для генерации чисел Бернулли, а также 

алгоритм их применения в криптографическом шифре. Реализован алгоритм 

преобразования текста в числовую последовательность с последующим 

шифрованием и расшифрованием на основе арифметических операций с 

числами Бернулли.  

 

Abstract. This paper presents an encryption method based on Bernoulli 

numbers. A mathematical description of the method is given, including recurrence 

relations for generating Bernoulli numbers and an algorithm for their application in a 

cryptographic cipher. The algorithm for converting text into a numerical sequence is 

implemented, followed by encryption and decryption based on arithmetic operations 

with Bernoulli numbers. 
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Числа Бернулли — это последовательность рациональных чисел, 

возникающих в ряде Тейлора функции 
𝑥

𝑒𝑥−1
. Они обозначаются как 𝐵𝑛 и 

используются, например, при вычислении значений сумм степеней натуральных 

чисел, в разложениях и аналитических выражениях.  

Числа Бернулли определяются рекуррентным соотношением 

𝐵0 = 1,     𝐵𝑛 = −
1

𝑛 + 1
∑(

𝑛 + 1
𝑘 + 1

)𝐵𝑛−𝑘

𝑛

𝑘=1

 , 𝑛 ∈ 𝑁. 

Первые числа Бернулли:  

𝐵0 = 1, 𝐵1 = −
1

2
, 𝐵2 =

1

6
,𝐵3 = 0,𝐵4 = −

1

30
,…. 

Отметим, что нечётные индексы (кроме первого) дают нулевые значения. 

Числа Бернулли представляют собой важную и широко изучаемую 

последовательность в математике, которая обладает уникальными свойствами и 

играет значительную роль в различных областях науки, таких как теория чисел, 

анализ, комбинаторика и криптография.  

Одной из ключевых особенностей чисел Бернулли является их подчинение 

строго определённым рекуррентным соотношениям. Эти соотношения 

обеспечивают возможность последовательного вычисления чисел Бернулли, 

опираясь на значения, которые были найдены на предыдущих этапах. Такой 

подход делает процесс их вычисления систематизированным и предсказуемым, 

что особенно важно при их применении в задачах с высокой степенью 

вычислительной сложности. 
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Основное рекуррентное соотношение для чисел Бернулли [1] имеет 

следующий вид: 

∑(
𝑚+ 1
𝑘

)𝐵𝑘

𝑛

𝑘=0

= 0 (1) 

где (
𝑚 + 1
𝑘

) =
(𝑚+1)!

𝑘!(𝑚+1−𝑘)!
 — биномиальный коэффициент, описывающий 

количество способов выбрать 𝑘 элементов из 𝑚+ 1 элементов. Свойства этого 

соотношения: 

1. 𝐵0 = 1; 

2. 𝐵1 = −
1

2
; 

3. 𝐵𝑚 = 0 для всех нечетных 𝑚 > 1. 

Используя это рекуррентное соотношение, можно вычислить 𝐵𝑚 для 

любого 𝑚, зная значения для меньших индексов. Например, для 𝑚 = 2: 

(
3
0
)𝐵0 + (

3
1
)𝐵1 + (

3
2
)𝐵2 + (

3
3
)𝐵3 = 0 

Подставляя известные значения 𝐵0 = 1, 𝐵1 = −
1

2
, 𝐵3 = 0, можно найти 𝐵2. 

Числа Бернулли могут быть использованы для генерации матриц, 

применяемых в многослойных системах шифрования. 

Матрица Бернулли 𝐵𝑛 [2] формируется на основе чисел Бернулли и 

используется для преобразования данных. Она имеет следующий вид (2): 

𝐵𝑛 = (
𝐵𝑛−1 𝐵𝑛
𝐵𝑛 𝐵𝑛+1

) (2) 

При n = 1 матрица 𝐵1 имеет следующий вид (3): 

𝐵1 = (
1 −

1

2

−
1

2

1

6

) (3) 
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Для n = 2 матрица расширяется, добавляя новые элементы (4): 

𝐵2 =

(

 
 
1 −

1

2
0

−
1

2

1

6
0

0 0 1)

 
 

(4) 

Шифрование данных играет ключевую роль в обеспечении безопасности 

информации. Использование чисел Бернулли в криптографии позволяет 

создавать ключи со сложной структурой, что затрудняет их предсказание. 

Принцип шифрования заключается в преобразовании символов текста в 

числовые представления с последующим модифицированием с использованием 

чисел Бернулли [3]. 

Метод шифрования основан на поэтапном преобразовании исходного 

текста в числовую форму, его разбиении на блоки фиксированной длины и 

последовательном применении математических операций для получения 

зашифрованного сообщения. В процессе шифрования используется матричная 

трансформация, ключевым элементом которой является матрица 𝐵2. Данная 

матрица строится с использованием чисел Бернулли и обладает особыми 

свойствами, обеспечивающими надежность преобразований. В зависимости от 

значений битов ключа шифрования матрица 𝐵2 применяется в различных 

степенях к каждому блоку данных, что усложняет анализ зашифрованного текста 

и повышает криптографическую стойкость метода. 

Основные этапы алгоритма: 

1. Отображение символов в числовой формат 

Каждому символу алфавита (включая пробелы и знаки препинания) 

сопоставляется уникальное число. Это позволяет представить текст в виде 

числового вектора. 

2. Формирование матрицы данных 

Числовая последовательность разбивается на блоки фиксированной длины, 

которые формируют матрицу 𝑞0, подлежащую шифрованию. 
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3. Генерация ключа шифрования 

Ключ задается в виде бинарной последовательности (например, «10101»), 

где каждая цифра влияет на применяемые матричные преобразования. Для 

каждого бита ключа выбирается степень, в которую будет возводиться матрица 

𝐵2. Эта степень определяется по формуле (5): 

𝑒𝑥𝑝 = (
𝑖 + 1

2
) + 1 (5)  

где i – индекс соответствующего бита. 

4. Матричные преобразования 

В зависимости от значения бита (например, «1» или «0») к исходной 

матрице данных 𝑞0 применяется матричное преобразование с 𝐵2
𝑒𝑥𝑝

. Если бит 

равен «1», то происходит умножение текущего состояния данных на 𝐵2
𝑒𝑥𝑝

, что 

обозначается как обновление ветки branch1. Если бит равен «0», то применяется 

альтернативное ветвление (branch0), при этом часто используется результат, 

полученный ранее при обработке битов «1». Такой механизм изменения степени 

матричного преобразования в зависимости от ключа позволяет добиться 

дополнительного уровня нелинейности и защищенности шифра. 

5. Формирование зашифрованного сообщения 

Итоговая матрица содержит зашифрованные данные, которые 

впоследствии могут быть дешифрованы при наличии правильного ключа. 

6. Дешифрование 

Для восстановления исходного сообщения применяется обратный процесс. 

Зашифрованная матрица, полученная в результате последовательного 

применения степеней 𝐵2, умножается на обратные матрицы 𝐵2
−𝑒𝑥𝑝

 в порядке, 

обратном порядку шифрования. Это позволяет отменить эффект каждого 

преобразования, восстановив исходное числовое представление данных. 

Рассмотрим пример шифрования слова «привет», ключ «101». 
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1. Пусть алфавит начинается с «а» = 0, «б» = 1, ..., «п» = 16, ..., «я» = 32. 

Тогда: «п» = 16, «р» = 17, «и» = 8, «в» = 2, «е» = 5, «т» = 19. Получаем числовой 

вектор 𝑉 = (16, 17, 9, 2, 5, 19). 

2. Выберем размер блока 𝑘 = 3, тогда вектор разбивается на два блока: 

 

𝑞0 = (
16 17 9
2 5 19

) 

 

3. Ключ шифрования — трёхбитный. Для каждого бита по формуле 𝑒𝑥𝑝 =

(
𝑖+1

2
) + 1 определим степень: i = 0 → exp = 1, i = 1 → exp = 2, i = 2 → exp = 2. 

4. Начинаем шифрование: 

• Шаг 1: бит = 1, exp = 1 

𝑏𝑟𝑎𝑛𝑐ℎ1 инициализируется: 𝑏𝑟𝑎𝑛𝑐ℎ1 = 𝑞0 ∗ 𝐵2
1 

 

𝑏𝑟𝑎𝑛𝑐ℎ1 = (
16 17 9
2 5 19

) ∗

(

 
 
1 −

1

2
0

−
1

2

1

6
0

0 0 1)

 
 
= (

15

2
−
31

6
9

−
1

2
−
1

6
19

) 

 

• Шаг 2: бит = 0, exp = 2 

𝑏𝑟𝑎𝑛𝑐ℎ0 инициализируется: 𝑏𝑟𝑎𝑛𝑐ℎ0 = 𝑞0 ∗ 𝐵2
2 

𝐵2
2 = 

(

 
 

5

4
−
7

12
0

−
7

12

5

18
0

0 0 1)

 
 

 

𝑏𝑟𝑎𝑛𝑐ℎ0 = (
16 17 9
2 5 19

) ∗

(

 
 

5

4
−
7

12
0

−
7

12

5

18
0

0 0 1)

 
 
= (

121

12
−
83

18
9

−
5

12

2

9
19

) 
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• Шаг 3: бит = 1, exp = 2 

𝑏𝑟𝑎𝑛𝑐ℎ1 обновляется: 𝑏𝑟𝑎𝑛𝑐ℎ1 = 𝑏𝑟𝑎𝑛𝑐ℎ1 ∗ 𝐵2
2 

𝑏𝑟𝑎𝑛𝑐ℎ1 = (

15

2
−
31

6
9

−
1

2
−
1

6
19

) ∗

(

 
 

5

4
−
7

12
0

−
7

12

5

18
0

0 0 1)

 
 
= (

223

18
−
1255

216
9

−
19

36

53

216
19

) 

 Итоговое зашифрованное сообщение – это матрица 𝑏𝑟𝑎𝑛𝑐ℎ1. 

5. Теперь расшифруем сообщение. Для этого найдем обратные матрицы 

для 𝐵2
2 и 𝐵2

1: 

𝐵2
−2 = (

40 84 0
84 180 0
0 0 1

),     𝐵2
−1 = (

−2 −6 0
−6 −12 0
0 0 1

) 

Далее, умножаем матрицу 𝑏𝑟𝑎𝑛𝑐ℎ1 сначала на 𝐵2
−2: 

(

223

18
−
1255

216
9

−
19

36

53

216
19

) ∗ (
40 84 0
84 180 0
0 0 1

) = (

15

2
−
31

6
9

−
1

2
−
1

6
19

) 

Затем полученную матрицу умножаем на 𝐵2
−1: 

(

15

2
−
31

6
9

−
1

2
−
1

6
19

) ∗ (
−2 −6 0
−6 −12 0
0 0 1

) = (
16 17 9
2 5 19

) 

Это и есть исходная матрица 𝑞0. 

 

Использование чисел Бернулли в криптографии демонстрирует потенциал 

для создания алгоритмов, обладающих высокой степенью защиты благодаря 

сложности их структуры. Они могут быть использованы для генерации 

криптографических ключей, что затрудняет их анализ и взлом. В перспективе 

данный метод может быть усовершенствован и адаптирован для различных 

приложений в области защиты информации. 
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Производство смесей высокого качества в различных отраслях 

промышленности при непрерывном дозировании исходных компонентов 

является приоритетной задачей по созданию передвижных и стационарных 

весодозирующих и смесительных установок. Причем вопросы автоматического 

управления непрерывным весовым дозированием и смешиванием компонентов 

при производстве смесей являются ключевыми. 

Работа посвящена исследованию повышения точности весового 

непрерывного дозирования компонентов смесей и созданию АСУ дозированием. 

При этом требовалось изучить особенности весового дозирования 

компонентов смесей как объекта управления и выработать проектные 

предложения для реализации автоматического непрерывного весового 

дозирования. 

Исследование процесса непрерывного весового дозирования компонентов 

смесей с разработкой и созданием АСУ дозированием представляет важную 

научную и практическую проблему. 

В работе решены следующие задачи: 

– исследование процесса дозирования как объекта компьютерного 

управления; 

– модернизация структуры управления взвешиванием на базе современных 

средств автоматического контроля и управления; 

– выбор комплекса технических средств системы управления 

непрерывным весовым дозированием компонентов смесей; 

– техническая реализация системы управления на основе использования 

рычажных весов, частотных преобразователей, а также контроллера, регулятора 

или промышленного компьютера. 

Объект исследования являлись автоматические весовые дозаторы 

компонентов смесей. Предмет исследования – процесс непрерывного весового 

дозирования компонентов смесей. К научной новизне работы можно отнести 
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определение особенности управления процессом непрерывного весового 

дозирования.[1] 

Проектная значимость, заключается в выборе комплекса технических 

средств автоматизации дозирования и на их основе создание 

автоматизированной тензометрической системы дозирования. 

Работа имеет практическую ценность, заключающуюся в разработке 

системы управления весовым дозированием. 

Результаты работы: 

– определены особенности процесса весового дозирования и системы 

управления дозированием; 

– выявлена и экспериментально подтверждена точность дозирования 

компонентов на реальном весовом оборудовании; 

– получены проектные решения по модернизации участка автоматического 

дозирования компонентов; 

– предложенная в работе система управления дозированием 

характеризуется сбором, анализом и оперативным управлением 

технологическим весовым оборудованием. 

Апробация работы: основные положения докладывались на научно-

технических конференциях, проводимых в разные годы в ВГЛТУ.  

Работа состоит из трех основных частей, объединенных единой целью 

исследования вопросов автоматизации процесса непрерывного дозирования 

сыпучих материалов.  

Анализ состояния научно-технических разработок в области 

автоматизации непрерывного весового дозирования сыпучих материалов 

передвижных и стационарных установок показал недостатки существующего 

весоизмерительного оборудования по точности дозирования. 

В последнее время разработка и выбор комплекса технических средств 

автоматизации непрерывного дозирования материалов смесительных установок 

выполняется с тензометрической весоизмерительной системой. 
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На основе вышеизложенных знаний можно сделать заключение о 

результате проделанной работы. [2] 

В дальнейшем будем рассматривать именно такой способ 

комбинированного управления дозатором, оснащенного ленточным питателем. 

Преимущества двухагрегатного комбинированного дозатора очевидны и 

заключаются в следующем: 

– возможность варьирования в широком диапазоне расхода исходного 

компонента, поступающего на ленту грузоприемного весоизмерительного 

органа дозатора; 

– возможность без существенной потери точности дозирования 

осуществлять подачу ленточным питателем неоднородного сыпучего материала 

различной структуры и гранулометрического состава; 

– возможность создания простой конструкции дозатора на базе двух 

однотипных ленточных конвейеров, но осуществляющих различные функции – 

подачи и измерения насыпной массы материала; 

– использование и распространение принципа комбинированного 

управления на дозирующие устройства непрерывного типа, различающиеся 

конструктивными особенностями. 

С учетом сказанного, для реализации принципа комбинированного 

управления дозатором на практике, необходимо создание двухконтурного 

регулирования по параметрам насыпной массы материала на ленте и скорости 

движения самой ленты грузоприемного органа. Структурная схема 

двухагрегатного комбинированного весового дозатора, оснащенного средствами 

автоматизации: датчиками, регуляторами и исполнительными механизмами, 

изображена на рисунке 1.  

Можно сделать промежуточный вывод о том, что для двухагрегатного 

комбинированного весового дозатора увеличение точности дозирования 

напрямую будет зависеть от совершенствования структуры и принципа 

комбинированного управления. Сигнал, пропорциональный насыпной массе 
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материала, перемножается с сигналом частоты вращения приемного конвейера, 

результат перемножения сравнивается с заданным расходом и отрабатывается 

регуляторами воздействием на приводы конвейера и питателя. 

 

Рисунок 1 – Структурная схема двухагрегатного комбинированного весового 

дозатора 

Основная цель изучения принципа управления двухагрегатного 

комбинированного весового дозатора заключается в обеспечении снижения 

динамической погрешности дозирования при практической реализации 

управления дозатором непрерывного действия. 

С точки зрения управления дозатором необходимо определить основное 

возмущающее воздействие на него. Таким воздействием является величина 

рассогласования между заданным и текущим значением расхода материала. 

Устранить возникшее рассогласование возможно изменением насыпной массы 

материала со стороны ленточного питателя, так и изменением частоты вращения 

ленты грузового конвейера. 

Особенность работы дозатора непрерывного действия заключается в том, 

что расход материала на транспортере можно представить за входную величину, 
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а вес материала за выходную величину. Также необходимо учесть, что грузовой 

конвейер – это звено чистого транспортного запаздывания, где материал в один 

и тот же момент времени приходит на транспортер и уходит с него. 

В соответствии с рисунком 1 имеет место двухконтурное регулирование 

производительности дозатора. Первый контур выполняет стабилизацию частоты 

вращения грузового конвейера и одновременно стабилизацию расхода 

материала на ленте как функции двух переменных: насыпной массы материала, 

формируемой контуром управления питателем и скоростью вращения ленты 

грузового конвейера. Второй контур управления питателем имеет свой 

собственный регулятор, обеспечивающий стабилизацию подачу сыпучего 

материала на грузовую ленту. 

В качестве датчика частоты вращения грузового конвейера использован 

тахогенератор, которым может служить генератор постоянного тока. 

В качестве датчика веса (насыпной массы) в последнее время применяют 

тензометрические силовые измерители. После прохождения блока 

перемножения сформирован сигнал фактической производительности дозатора 

в данный момент времени для сравнения его с заданным значением 

производительности от задатчика. 

Структурная схема управления комбинированным двухагрегатным 

дозатором представлена на рисунке 2. 

В качестве датчика скорости, используется тахогенератор, которым 

является генератор переменного тока с последующим выпрямлением; датчиком 

массы служит сельсин, фиксирующий перемещение грузоприемного 

транспортера; в качестве регулятора используется стандартный регулятор. 

Таким образом, система управления двухагрегатным дозатором 

поддерживает в заданных пределах скорость движения ленты транспортера и 

интенсивность подачи материала шнековым питателем из бункера сыпучего 

материала. 
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 Весовые дозаторы непрерывного действия, являясь аналоговыми 

системами, представляют собой системы, легко поддающиеся расчету в 

динамике. Для подобных расчетов необходимо знание динамики основного 

элемента дозатора – грузоприемного органа, которым является короткий 

ленточный транспортер. 

 

 

Рисунок 2 – Структурная схема автоматизации двухагрегатного дозатора 

 

Применительно к рассмотренным структурным схемам автоматизации 

весовых дозаторов приведем математический аппарат, описывающий работу 

принципа комбинированного управления, связывающий в функциональной 

зависимости интенсивность подачи материала на ленту грузового конвейера и 

скорость ленты этого конвейера. Для этого воспользуемся структурными 

схемами двухагрегатных комбинированных весовых дозаторов и условными 

обозначениями сигналов физических параметров, приведенными на схемах в 

соответствии с рисунками 1 и 2. 
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Обеспечиваемая весовым дозатором производительность Qдоз может быть 

вычислена по следующей формуле: 

Qдоз = γ Sкон hкон Vкон, 

где γ – насыпная масса сыпучего материала;  

Sкон – ширина ленты грузоприемного конвейера;  

Vкон – линейная скорость ленты грузоприемного конвейера;  

hкон – высота сыпучего компонента на грузоприемном конвейере. 

Если критически обосновать состав формулы, то при постоянстве 

насыпной массы дозируемого сыпучего компонента и ширины ленты грузового 

конвейера производительность дозатора Qдоз будет зависеть от линейной 

скорости ленты и высоты сыпучего компонента на грузовом конвейере. 

В случае если произойдет изменение насыпной массы компонента, то она 

может быть эквивалентно заменена высотой hкон сыпучего компонента на 

грузовом конвейере. 

Рассмотрим вычисление производительности ленточного питателя по 

аналогичной выше формуле: 

Qпит = γ Sпит hпит Vпит, 

где γ – насыпная масса компонента;  

Sпит – ширина ленты конвейера питателя;  

Vпит – линейная скорость ленты конвейера питателя;  

hпит – высота сыпучего компонента на конвейере питателя. 

Так как рассматривается работа дозатора, реализующего непрерывный 

принцип действия, то к нему применим закон сохранения массы, в соответствии 

с которым общий расход поступающих в дозатор сыпучих материалов равен 

общему расходу выходящих из дозатора материалов: 

Qпит = Qдоз 

Подставим формулы: 

γ Sпит hпит Vпит = γ Sкон hкон Vкон .    (1) 
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Рассмотрим частный случай, когда ширина ленты грузового конвейера 

равна ширине ленты конвейера питателя, тогда это позволяет записать: 

hпит Vпит = hкон Vкон, 

hкон = hпит Vпит / Vкон.     (2) 

В соответствии со структурной схемой двухагрегатного 

комбинированного весового дозатора по рисунку 1 автоматическое управление 

дозатором осуществляется при одновременном регулировании скорости ленты 

питателя и скорости ленты грузовоспринимающего конвейера. Аналогично это 

утверждение относится и к рисунку 2. При этом обязательным условием 

автоматического управления дозатором должна быть синхронизация скоростей 

электроприводов двух агрегатов.  

Математически это можно представить следующим выражением, 

связывающим две скорости: 

Vпит = K Vкон ,      (3) 

где K – коэффициент синхронизации. 

Технически это реализуется с помощью устройств синхронизации. 

Подставим соотношение (3) в выражение (2), получим: 

hкон = hпит K Vкон / Vкон .     (4) 

Сократив, получим: 

hкон = K hпит       (5) 

Выражение (5) и (3) показывают, что возможно изменение высоты слоя на 

ленте грузового конвейера регулированием синхронизирующими устройствами 

по отношению к слою конвейера питателя. Для частного случая, когда 

коэффициент синхронизации K в выражении (3) равен 1, регулирование высоты 

слоя на ленте грузового конвейера возможно только изменением скорости этого 

конвейера. 

Другими словами, должна быть установлена следующая функциональная 

зависимость: 

hкон = f (Vкон). 
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Тогда формула (5) с учетом сказанного перепишется следующим образом: 

hкон = K hпит Vкон .      (6) 

где K – коэффициент передачи привода питателя. 

Из выражения (1) легко установить связь для hпит 

hnит = hкон  Vкон / Vпит . 

Полученное выражение подставим в формулу (6), тогда установим 

функциональную зависимость 

Vпит = K Vкон Vкон .     (7) 

Представленный математический аппарат позволил получить 

функциональную зависимость (7), в соответствии с которой скорость ленты 

конвейера питателя должна быть пропорциональна квадрату скорости ленты 

грузоприемного конвейера. 

Принцип комбинированного управления двухкомпонентным дозатором 

предполагает одновременное регулирование двух технологических параметров 

при наличии одного или двух регуляторов. В первом случае имеет место один 

контур регулирования с обратной связью по производительности дозатора, во 

втором – два контура: регулирование скорости ленты питателя и регулирование 

скорости ленты грузового конвейера. 

Принцип реализации комбинированной автоматической системы 

регулирования предполагает согласованное управление двумя и более 

исполнительными механизмами. Причем теоретически может изменяться во 

времени как насыпная масса на ленте грузового конвейера, создаваемая 

ленточным питателем, так и скорость перемещения ленты грузового конвейера. 

Как показывают проведенные расчеты и полученные функциональные 

зависимости, регулирование расхода материала дозатором должно 

производиться на практике регулированием приводов и питателя, и конвейера 

при обеспечении квадратичной зависимости скорости ленты питателя от 

скорости ленты грузового конвейера. 
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В работе были выполнены исследования по научно-технической проблеме 

управления процессом непрерывного весового дозирования сыпучих материалов 

смесительных установок. Основными результатами являются приведенные ниже 

положения:  

1. Проведена характеристика основных научно-технических разработок в 

области автоматизации непрерывного весового дозирования сыпучих 

материалов. 

2. В качестве объекта автоматизации выбран дозатор автоматический 

ленточный весового непрерывного действия "КЛИМ-ВД". 

3. Рассмотрена структурная схема современной типовой 

весоизмерительной установки непрерывного действия. 

4. Проведена характеристика автоматизированной системы управления 

непрерывным весовым дозированием компонентов смесей. 

5. Выполнено моделирование процессов непрерывного дозирования 

сыпучих материалов. 

6. Разработана структурная схема двухагрегатного комбинированного 

весового непрерывного дозатора. 

7. Для обеспечения нормальной работы дозатора с точки зрения 

автоматического управления регулирование расхода материала дозатором 

должно производиться на практике регулированием приводов и питателя, и 

конвейера при обеспечении квадратичной зависимости скорости ленты питателя 

от скорости ленты грузового конвейера. 

8. Рассмотрена проблема достижения точности дозирования сыпучих 

материалов применением замкнутого регулирования основных параметров 

весового дозатора. 

9. Эффективность предложенных научно-технических решений может 

быть доказана на практике. 
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спектр операторного пучка, соответствующего интегральному оператору, 

строится многопараметрическое семейство решений. 

Abstract. In a specially introduced Banach space, the Volterra integral equation 

with a third-order kernel having a finite number of derivatives near zero is studied. 

Under certain restrictions on the spectrum of the operator bundle corresponding to the 

integral operator, a multi-parameter family of solutions is constructed. 

Ключевые слова: собственный вектор, обратный оператор, 

функциональное пространство, характеристическое число, частное решение. 

Keywords: eigenvector, inverse operator, functional space, characteristic 

number, partial solution. 

 

Введение 

В действительном функциональном пространстве задана ‖∙‖𝐸. Ей 

соответствует в пространстве 𝐿(𝐸) всех отображений на 𝐸 соответствующая 

норма 

‖𝐴‖𝐿(𝐸) = sup
‖𝑥‖𝐸=1

‖𝐴𝑥‖𝐸. 

В пространстве 𝐵([0, 𝛿], 𝐸) норма выглядит следующим образом 

‖𝛼(𝑥)‖𝐵([0,𝛿],𝐸) = sup
0≤𝑥≤𝛿

‖𝛼(𝑥)‖𝐸. 

Рассмотрим семейство банаховых пространств 

𝑄𝛾
𝑘 = {𝛼(𝑥): 𝛼(𝑖)(𝑥) = 𝑥𝛾−𝑖𝜔𝑖(𝑥),𝜔𝑖(𝑥) ∈ 𝐵([0, 𝛿], 𝐸); 

‖𝛼(𝑥)‖𝑄𝛾𝑘 = max
0≤𝑖≤𝑘

‖𝜔𝑖(𝑥)‖𝐵([0,𝛿],𝐸)}. 

Изучается интегральное уравнение 

∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
𝑥

0
= 𝑓(𝑥),   0 ≤ 𝑥 ≤ 𝛿                              (1) 

с ядром третьего порядка, имеющим конечное число производных вблизи нуля. 
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Пусть существуют пределы 𝐶0 = lim
𝑥→+0

𝐾(𝑥,𝑥)

𝑥3
, 𝐶1 = lim

𝑥→+0

𝐾𝑡
′(𝑥,𝑥)

𝑥2
,  

𝐶2 = lim
𝑥→+0

𝐾𝑡𝑡
′′(𝑥,𝑥)

𝑥
, 𝐶3 = lim

𝑥→+0

−𝐾
𝑡3
(3)
(𝑥,𝑥)

𝑥0
, причем 𝐶0 имеет ограниченный обратный 

𝐶0
−1. 

Отсюда следует, что при достаточно малом 𝑥  

‖
𝐾(𝑥,𝑥)

𝑥3
− 𝐶0‖

𝐿(𝐸)
< 𝜀, ‖

−𝐾𝑡
′(𝑥,𝑥)

𝑥2
− 𝐶1‖

𝐿(𝐸)
< 𝜀, ‖

𝐾𝑡𝑡
′′(𝑥,𝑥)

𝑥
− 𝐶2‖

𝐿(𝐸)
< 𝜀, 

‖
−𝐾

𝑡3
(3)

𝑥0
− 𝐶3‖

𝐿(𝐸)

< 𝜀                                              (2) 

Лемма 1. Уравнение (1) имеет решение 𝜑(𝑥) ∈ 𝑄𝛾
0   (𝜑(𝑥) = 𝜗′′(𝑥)) тогда 

и только тогда, когда интегро-дифференциальное уравнение  

𝐴𝜗 + 𝐷𝜗 = 𝑓(𝑥)                                                    (3) 

имеет решение 𝜗(𝑥) ∈ 𝑄𝛾+2
2 , где  

(𝐴𝜗)(𝑥) = 𝐶0𝑥
3𝜗(2)(𝑥) + 𝐶1𝑥

2𝜗′(𝑥) + 𝐶2𝑥𝜗(𝑥) + 𝐶3 ∫ 𝜗(𝑡)𝑑𝑡
𝑥

0
,       (4) 

(𝐷𝜗)(𝑥) = [𝐾(𝑥, 𝑥) − 𝐶0𝑥
3]𝜗(2)(𝑥) + [−𝐾𝑡

′(𝑥, 𝑥) − 𝐶1𝑥
2]𝜗′(𝑥) + 

+[𝐾𝑡𝑡
′′(𝑥, 𝑥) − 𝐶2𝑥]𝜗(𝑥) + ∫ [−𝐾

𝑡3
(3)(𝑥, 𝑡) − 𝐶3] 𝜗(𝑡)𝑑𝑡

𝑥

0
.              (5) 

Доказательство леммы можно провести, интегрируя по частям 

∫ 𝐾(𝑥, 𝑡)𝜗′′(𝑡)𝑑𝑡
𝑥

0
. 

Действительно, 

∫𝐾(𝑥, 𝑡)𝜗(3)(𝑡)𝑑𝑡

𝑥

0

= 𝐾(𝑥, 𝑡)𝜗(2)(𝑡)|
0

𝑥
−∫𝐾𝑡

′(𝑥, 𝑡)𝜗(2)(𝑡)𝑑𝑡

𝑥

0

= 

= 𝐾(𝑥, 𝑥)𝜗(2)(𝑥) − 𝐾𝑡
′(𝑥, 𝑡)𝜗(1)(𝑡)|

0

𝑥
+∫𝐾𝑡𝑡

′′(𝑥, 𝑡)𝜗′(𝑡)𝑑𝑡

𝑥

0

= 

= 𝐾(𝑥, 𝑥)𝜗(2)(𝑥) − 𝐾𝑡
′(𝑥, 𝑥)𝜗′(𝑥) + 𝐾𝑡𝑡

′′(𝑥, 𝑥)𝜗(𝑥) − ∫𝐾
𝑡3
(3)(𝑥, 𝑡)𝜗(𝑡)𝑑𝑡

𝑥

0

= 

= [𝐾(𝑥, 𝑥) − 𝐶0𝑥
3]𝜗(2)(𝑥) + [−𝐾𝑡

′(𝑥, 𝑥) − 𝐶1𝑥
2]𝜗′(𝑥) + 
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+[𝐾𝑡𝑡
′′(𝑥, 𝑥) − 𝐶2𝑥]𝜗(𝑥) + ∫ [−𝐾𝑡3

(3)(𝑥, 𝑡) − 𝐶3] 𝜗(𝑡)𝑑𝑡

𝑥

0

+ 

+𝐶0𝑥
3𝜗(2)(𝑥) + 𝐶1𝑥

2𝜗′(𝑥) + 𝐶2𝑥𝜗(𝑥) + 𝐶3∫𝜗(𝑡)𝑑𝑡

𝑥

0

= 

= (𝐴𝜗)(𝑥) + (𝐷𝜗)(𝑥),   𝜗(𝑥) ∈ 𝑄𝛾+2
2 . 

Лемма доказана. 

Лемма 2. Пусть операторный пучок 

𝑃(𝛼) = 𝐶0(𝛼 + 3)(𝛼 + 2) + 𝐶1(𝛼 + 3) + 𝐶2 + 𝐶3
1

𝛼 + 4
 

имеет характеристическое число 𝛼 > −1, которому соответствует собственный 

вектор 𝑢0 и цепочка присоединенных векторов 𝑢𝑖 (𝑖 = 1,… ,𝑚). Тогда для 

уравнения 𝐴𝜗 = 0 существует 𝑚 + 1 линейно независимых решений, 

принадлежащих пространству 𝑄𝛾+3
3 , где 𝛾 ≥ 𝛼. Они будут иметь вид 

𝜗𝑒(𝑥) = 𝑥𝛼+3(𝑎0 + 𝑎1𝑙𝑛𝑥 +⋯+ 𝑎𝑒𝑙𝑛
𝑒𝑥),     𝑒 = 0,… ,𝑚.             (6) 

Доказательство. Найдем 𝜗𝑒
′(𝑥),  𝜗𝑒

′′(𝑥). 

𝜗′(𝑥) = (𝛼 + 3)𝑥𝛼+2(𝑎0 + 𝑎1𝑙𝑛𝑥 + 𝑎2𝑙𝑛
2𝑥 + ⋯+ 𝑎𝑒𝑙𝑛

𝑒𝑥) + 

+𝑥𝛼+2(𝑎1 + 2𝑎2𝑙𝑛𝑥 + 3𝑎3𝑙𝑛
2𝑥 +⋯+ 𝑒𝑙𝑛𝑒−1𝑥), 

𝜗′′(𝑥) = (𝛼 + 3)(𝛼 + 2)𝑥𝛼+1(𝑎0 + 𝑎1𝑙𝑛𝑥 + 𝑎2𝑙𝑛
2𝑥 +⋯+ 𝑎𝑒𝑙𝑛

𝑒𝑥) + 

+[(𝛼 + 2) + (𝛼 + 3)]𝑥𝛼+1(𝑎1 + 2𝑎2𝑙𝑛𝑥 + 3𝑎3𝑙𝑛
2𝑥 +⋯+ 𝑒𝑙𝑛𝑒−1𝑥) + 

+𝑥𝛼+1(2𝑎2 + 6𝑎3𝑙𝑛𝑥 + 12𝑎4𝑙𝑛
2𝑥 +⋯+ 𝑒(𝑒 − 1)𝑙𝑛𝑒−2𝑥). 

Подставляя 𝜗𝑒(𝑥), 𝜗𝑒
′(𝑥), 𝜗𝑒

′′(𝑥) в уравнение 𝐴𝜗 = 0, получаем 

𝐶0𝑥
3{(𝛼 + 3)(𝛼 + 2)𝑥𝛼+1(𝑎0 + 𝑎1𝑙𝑛𝑥 + 𝑎2𝑙𝑛

2𝑥 +⋯+ 𝑎𝑒𝑙𝑛
𝑒𝑥) + 

+[(𝛼 + 2) + (𝛼 + 3)]𝑥𝛼+1(𝑎1 + 2𝑎2𝑙𝑛𝑥 + 3𝑎3𝑙𝑛
2𝑥 +⋯+ 𝑒𝑎𝑒𝑙𝑛

𝑒−1𝑥) + 

+𝑥𝛼+1(2𝑎2 + 6𝑎3𝑙𝑛𝑥 + 12𝑎4𝑙𝑛
2𝑥 +⋯+ 𝑒(𝑒 − 1)𝑎𝑒𝑙𝑛

𝑒−2𝑥)} + 

+𝐶1𝑥
2[(𝛼 + 3)𝑥𝛼+2(𝑎0 + 𝑎1𝑙𝑛𝑥 + 𝑎2𝑙𝑛

2𝑥 +⋯+ 𝑎𝑒𝑙𝑛
𝑒𝑥) + 

+𝑥𝛼+2(𝑎1 + 2𝑎2𝑙𝑛𝑥 + 3𝑎3𝑙𝑛
2𝑥 + ⋯+ 𝑒𝑎𝑒𝑙𝑛

𝑒−1𝑥)] + 



170 

+𝐶2𝑥
𝛼+4(𝑎0 + 𝑎1𝑙𝑛𝑥 + 𝑎2𝑙𝑛

2𝑥 +⋯+ 𝑎𝑒𝑙𝑛
𝑒𝑥) + 

+𝐶3 [𝑎0
𝑥𝛼+4

𝛼+4
+ ∑ 𝑎𝑝

𝑒
𝑝=1 ∑ (−1)𝐾

𝑝!

(𝑝−𝑘)!

𝑥𝛼+4

(𝛼+4)𝐾+1
𝑙𝑛𝑝−𝑘𝑥

𝑝
𝑘=0 ] = 0. 

Приравнивая коэффициенты при 𝑥𝛼+4𝑙𝑛𝑘𝑥 (𝑘 = 𝑒, 𝑒 − 1,… ,0), получаем 

следующую систему уравнений 

1) 𝑘 = 𝑒 

(𝐶0(𝛼 + 3)(𝛼 + 2) + 𝐶1(𝛼 + 3) + 𝐶2 + 𝐶3
1

𝛼 + 4
)𝑎𝑒 = 0, 

𝑃(𝛼)𝑎𝑒 = 0 

2) 𝑘 = 𝑒 − 1 

𝐶0[(𝛼 + 3)(𝛼 + 2)𝑎𝑒−1 + [(𝛼 + 2) + (𝛼 + 3)]𝑒𝑎𝑒] + 

+𝐶1[(𝛼 + 3)𝑎𝑒−1 + 𝑒𝑎𝑒] + 𝐶2𝑎𝑒−1 − 𝐶3𝑒
1

(𝛼 + 4)2
𝑎𝑒 + 𝐶3

1

𝛼 + 4
𝑎𝑒−1 = 0 

или 

[𝐶0(𝛼 + 3)(𝛼 + 2) + 𝐶1(𝛼 + 3) + 𝐶2 +
1

𝛼 + 4
𝐶3] 𝑎𝑒−1 + 

+[𝐶0[(𝛼 + 2) + (𝛼 + 3)]𝑒 + 𝐶1𝑒 − 𝐶3𝑒
1

(𝛼 + 4)2
]𝑎𝑒 = 0 

или 

𝑃(𝛼)𝑎𝑒−1 + 𝑃
′(𝛼)𝑒𝑎𝑒 = 0 

3) 𝑘 = 𝑒 − 2 

𝐶0[(𝛼 + 3)(𝛼 + 2)𝑎𝑒−2 + [(𝛼 + 2) + (𝛼 + 3)](𝑒 − 1)𝑎𝑒−1 + 

+(𝑒 − 1)𝑒𝑎𝑒] + 𝐶1[(𝛼 + 3)𝑎𝑒−2 + (𝑒 − 1)𝑎𝑒−1] + 𝐶2𝑎𝑒−2 + 

+𝐶3[𝑎𝑒𝑒(𝑒 − 1)
1

(𝛼 + 4)3
− 𝑎𝑒−1(𝑒 − 1)

1

(𝛼 + 4)2
+ 𝑎𝑒−2

1

𝛼 + 4
] = 0 

или 

(𝐶0(𝛼 + 3)(𝛼 + 2) + 𝐶1(𝛼 + 3) + 𝐶2 +
1

𝛼 + 4
𝐶3)𝑎𝑒−2 + 

+{𝐶0[(𝛼 + 2) + (𝛼 + 3)](𝑒 − 1) + 𝐶1(𝑒 − 1) − 
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−𝐶3(𝑒 − 1)
1

(𝛼 + 4)2
}𝑎𝑒−1 + 

+[𝐶0𝑒(𝑒 − 1) + 𝐶3𝑒(𝑒 − 1)
1

(𝛼 + 4)3
]𝑎𝑒−2 = 0 

или 

𝑃(𝛼)𝑎𝑒−2 + (𝑒 − 1)𝑃
′(𝛼)𝑎𝑒−1 +

𝑒(𝑒 − 1)

2
𝑃′′(𝛼)𝑎𝑒 = 0 

4) 𝑘 = 𝑒 − 3 

[𝐶0[(𝛼 + 3)(𝛼 + 2)] + 𝐶1(𝛼 + 3) + 𝐶2 + 𝐶3
1

𝛼 + 4
] 𝑎𝑒−3 + 

+{𝐶0[(𝛼 + 2) + (𝛼 + 3)](𝑒 − 2) + 𝐶1(𝑒 − 2) − 

−𝐶3(𝑒 − 2)
1

(𝛼 + 4)2
}𝑎𝑒−2 + 

+{𝐶0(𝑒 − 1)(𝑒 − 2) + 𝐶3(𝑒 − 1)(𝑒 − 2)
1

(𝛼 + 4)3
} 𝑎𝑒−1 − 

−𝐶3𝑒(𝑒 − 1)(𝑒 − 2)
1

(𝛼 + 4)4
𝑎𝑒 = 0 

или 

𝑃(𝛼)𝑎𝑒−3 + (𝑒 − 2)𝑃
′(𝛼)𝑎𝑒−2 +

𝑒(𝑒 − 1)

2
𝑃′′(𝛼)𝑎𝑒−1 + 

+
𝑒(𝑒 − 1)(𝑒 − 2)

6
𝑃′′′(𝛼)𝑎𝑒 = 0 

5) 𝑘 = 𝑒 − 𝑧   (𝑧 = 4,5,… , 𝑒) 

𝐶0[(𝛼 + 3)(𝛼 + 2)𝑎𝑒−𝑧 + [(𝛼 + 2) + (𝛼 + 3)](𝑒 − 𝑧 + 1)𝑎𝑒−𝑧+1 + 

+(𝑒 − 𝑧 + 2)(𝑒 − 𝑧 + 1)𝑎𝑒−𝑧+2] + 

+𝐶1[(𝛼 + 3)𝑎𝑒−𝑧 + (𝑒 − 𝑧 + 1)𝑎𝑒−𝑧+1] + 𝐶2𝑎𝑒−𝑧 + 

+𝐶3[𝑎𝑒−𝑧
1

𝛼 + 4
− 𝑎𝑒−𝑧+1(𝑒 − 𝑧 + 1)

1

(𝛼 + 4)2
+ 

+𝑎𝑒−𝑧+2(𝑒 − 𝑧 + 1)(𝑒 − 𝑧 + 2)
1

(𝛼 + 4)3
− 

−𝑎𝑒−𝑧+3(𝑒 − 𝑧 + 1)(𝑒 − 𝑧 + 2)(𝑒 − 𝑧 + 3)
1

(𝛼 + 4)4
+⋯+ 
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+(−1)𝑧−1𝑎𝑒−1(𝑒 − 𝑧 + 1) ∙ … ∙ (𝑒 − 1)
1

(𝛼 + 4)𝑧
+ 

+(−1)2𝑎𝑒(𝑒 − 𝑧 + 1) ∙ … ∙ 𝑒
1

(𝛼 + 4)𝑧+1
] = 0 

или  

𝑃(𝛼)𝑎𝑒−𝑧 + (𝑒 − 𝑧 + 1)𝑃
′(𝛼)𝑎𝑒−𝑧+1 +

(𝑒 − 𝑧 + 1)(𝑒 − 𝑧 + 2)

2!
𝑃′′(𝛼)𝑎𝑒−𝑧+2 + 

+
(𝑒 − 𝑧 + 1)(𝑒 − 𝑧 + 2)(𝑒 − 𝑧 + 3)

3!
𝑃′′′(𝛼)𝑎𝑒−𝑧+3 +⋯+ 

+
(𝑒 − 𝑧 + 1) ∙ … ∙ (𝑒 − 1)

(𝑧 − 1)!
𝑎𝑒−1 +

(𝑒 − 𝑧 + 1) ∙ … ∙ 𝑒

𝑧!
𝑎𝑒 = 0. 

Получили следующую систему уравнений 

1) 𝑃(𝛼)𝑎𝑒 = 0 

2) 𝑃(𝛼)𝑎𝑒−1 + 𝑃
′(𝛼)𝑎𝑒 = 0 

3) 𝑃(𝛼)𝑎𝑒−2 + (𝑒 − 1)𝑃
′(𝛼)𝑎𝑒−1 +

𝑒(𝑒−1)

2
𝑃′′(𝛼)𝑎𝑒 = 0 

4) 𝑃(𝛼)𝑎𝑒−3 + (𝑒 − 2)𝑃
′(𝛼)𝑎𝑒−2 +

(𝑒−2)(𝑒−1)

2
𝑃′′(𝛼)𝑎𝑒−1 + 

     +
𝑒(𝑒−1)(𝑒−2)

6
𝑃′′′(𝛼)𝑎𝑒 = 0 

5) 𝑃(𝛼)𝑎𝑒−𝑧 + (𝑒 − 𝑧 + 1)𝑎𝑒−𝑧+1 +
(𝑒−𝑧+1)(𝑒−𝑧+2)

2
𝑃′′(𝛼)𝑎𝑒−𝑧+2 + 

   +
(𝑒−𝑧+1)(𝑒−𝑧+2)(𝑒−𝑧+3)

6
𝑃′′′(𝛼)𝑎𝑒−𝑧+3 +⋯+

(𝑒−𝑧+1)∙…∙(𝑒−1)

(𝑧−1)!
𝑃(𝑧−1)𝑎𝑒−1 + 

+
(𝑒 − 𝑧 + 1) ∙ … ∙ 𝑒

𝑧!
𝑃(𝑧)𝑎𝑒 = 0. 

Решая последовательно данную систему уравнений, получаем 

1) 𝑎𝑒 = 𝑢0; 

2) 𝑃(𝛼)𝑎𝑒−1 + 𝑒𝑃
′(𝛼)𝑢0 = 0,   𝑎𝑒−1 = 𝑒𝑢1; 

3) 𝑃(𝛼)𝑎𝑒−2 + 𝑒(𝑒 − 1)𝑃
′(𝛼)𝑢1 +

𝑒(𝑒−1)

2
𝑃′′(𝛼)𝑢0 = 0,  

     𝑎𝑒−2 = 𝑒(𝑒 − 1)𝑢2; 

4) 𝑃(𝛼)𝑎𝑒−3 + (𝑒 − 2)(𝑒 − 1)𝑒𝑃
′(𝛼)𝑢2 +

(𝑒−2)(𝑒−1)𝑒

2
𝑃′′(𝛼)𝑢1 + 
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+
𝑒(𝑒−1)(𝑒−2)

6
𝑃′′′(𝛼)𝑢0 = 0,   𝑎𝑒−3 = 𝑒(𝑒 − 1)(𝑒 − 2)𝑢3; 

5) 𝑃(𝛼)𝑎𝑒−𝑧 + 𝑒(𝑒 − 1) ∙ … ∙ (𝑒 − 𝑧 + 1)𝑃
′(𝛼)𝑢𝑧−1 + 

+𝑒(𝑒 − 1) ∙ … ∙ (𝑒 − 𝑧 + 1)
𝑃′′(𝛼)

2
𝑢𝑧−2 + 

+𝑒(𝑒 − 1) ∙ … ∙ (𝑒 − 𝑧 + 1)
𝑃′′′(𝛼)

3!
𝑢𝑧−3 +⋯+ 

+𝑒(𝑒 − 1) ∙ … ∙ (𝑒 − 𝑧 + 1)
𝑃(𝑧−1)(𝛼)

(𝑧 − 1)!
𝑢1 + 

+𝑒(𝑒 − 1) ∙ … ∙ (𝑒 − 𝑧 + 1)
𝑃(𝑧)(𝛼)

𝑧!
𝑢0 = 0, 

𝑎𝑒−2 = 𝑒(𝑒 − 1) ∙ … ∙ (𝑒 − 𝑧 + 1)𝑢𝑧 =
𝑒!

(𝑒−𝑧)!
𝑢𝑧. 

Следовательно, 

𝑎𝑒−2 =
𝑒!

(𝑒−𝑧)!
𝑢𝑧   (𝑧 = 0,1,2,… , 𝑒). 

Лемма доказана. 

Лемма 3. Операторы 𝐴 и 𝐷 действуют из 𝑄𝛾+3
3  в 𝑄𝛾+4

1 , причем для любого 

𝜀 > 0 существует 𝛿 > 0, такое что ‖𝐷‖𝑄𝛾+33 →𝑄𝛾+4
1 < 𝜀 при 0 ≤ 𝑥 ≤ 𝛿. 

Действительно, если 𝜗(𝑥) ∈ 𝑄𝛾+3
3 , то 𝜗′(𝑥) ∈ 𝑄𝛾+2

2 , 𝜗′′(𝑥) ∈ 𝑄𝛾+1
1 , 

𝑥3𝜗′′(𝑥) ∈ 𝑄𝛾+4
1 , 𝑥2𝜗′(𝑥) ∈ 𝑄𝛾+4

2 ∈ 𝑄𝛾+4
1 , 𝑥𝜗(𝑥) ∈ 𝑄𝛾+4

3 ∈ 𝑄𝛾+4
1 ,  

∫ 𝜗(𝑡)𝑑𝑡
𝑥

0
∈ 𝑄𝛾+4

4 ∈ 𝑄𝛾+4
1 . 

Таким образом 𝐴𝜗 ∈ 𝑄𝛾+4
1 , 𝐷𝜗 ∈ 𝑄𝛾+4

1 . Нетрудно оценить норму оператора 

𝐷, ‖𝐷‖𝑄𝛾+33 →𝑄𝛾+4
1 < 𝜀 при достаточно малых 𝑥 (0 ≤ 𝑥 ≤ 𝛿). 

Лемма 4. При любой 𝑓(𝑥) ∈ 𝑄𝛾+4
1  уравнение 𝐴𝜗 = 𝑓 имеет частное 

решение 𝜗 ∈ 𝑄𝛾+3
3 , удовлетворяющее условию ‖𝜗‖𝑄𝛾+33 ≤ 𝐶‖𝑓‖𝑄𝛾+41 . 

Доказательство. Введем новые функции ∫ 𝜗(𝑡)𝑑𝑡
𝑥

0
= 𝑤1(𝑥),  

𝑥𝜗(𝑥) = 𝑤2(𝑥), 𝑥
2𝜗′ = 𝑤3(𝑥), тогда уравнение 𝐴𝜗 = 𝑓 сведется к следующей 

системе уравнений 
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{

𝑥𝑤1
′ = 𝑤2

𝑥𝑤2
′ = 𝑤2 +𝑤3

𝑥𝑤3
′ = −𝐶0

−1𝐶3𝑤1 − 𝐶0
−1𝐶2𝑤2 + (2𝐼 − 𝐶0

−1𝐶1)𝑤3 + 𝐶
−1𝑓

 

или 

𝑥𝑤′ + 𝐵𝑤 = 𝑓(̅𝑥),                                           (7) 

где 

𝑤(𝑥) = (

𝑤1(𝑥)
𝑤2(𝑥)
𝑤3(𝑥)

),        𝐵𝐸×𝐸→𝐸×𝐸 = (
0 −𝐼 0
0 −𝐼 −𝐼

𝐶0
−1𝐶3 𝐶0

−1𝐶2 𝐶0
−1𝐶1 − 2𝐼

),  

𝑓(̅𝑥) = (
0

𝐶0
−1𝑓(𝑥)

). 

Значения 𝑓(̅𝑥) принадлежат пространству 𝐸 × 𝐸. 

Разрешающий оператор уравнения 𝑥𝑤′ + 𝐵𝑤 = 0 имеет вид  

𝑈(𝑥, 𝑠) = 𝑒(∫
𝑑𝑡

𝑡

𝑠

𝑥
𝐵)

. Если спектр оператора 𝐵 лежит в левой полуплоскости  

𝑅𝑒𝜆 ≤ 𝛾∗ < 0, то справедлива оценка ‖𝑈(𝑥, 𝑠)‖ ≤ 𝑁𝑒−𝛾̅ ∫
𝑑𝑡

𝑡

𝑠

𝑥 , 0 ≤ 𝑥 ≤ 𝑠 ≤ 𝛿,  

𝛾∗ < −𝛾̅ < 0, 𝑁 > 0. 

Рассмотрим операторные уравнения 

{
 

 
(𝐵 − 𝜆𝐼)𝑒 = 0      или

−𝜆𝑒1 − 𝑒2 = 0

−(1 + 𝜆)𝑒2 − 𝑒3 = 0

𝐶0
−1𝐶3𝑒1 + 𝐶0

−1𝐶2𝑒2 + (𝐶0
−1𝐶1 − (2 + 𝜆)𝐼)𝑒3 = 0

 

Преобразовывая эту систему уравнений, получаем 

(𝐶0
−1𝐶3

1

𝜆(𝜆+1)
− 𝐶0

−1𝐶2
1

1+𝜆
+ (𝐶0

−1𝐶1 − (2 + 𝜆)𝐼)) 𝑒3 = 0, 

(𝐶3
1

𝜆(𝜆+1)
− 𝐶2

1

1+𝜆
+ 𝐶1 − 𝐶0(2 + 𝜆)) 𝑒3 = 0, 

(𝐶3 (−
1

𝜆
) + 𝐶2 − 𝐶1(1 + 𝜆) + (1 + 𝜆)(2 + 𝜆)𝐶0) 𝑒3 = 0. 

Сделаем замену −𝜆 = 𝛼 + 4, тогда получим 

[
1

𝛼+4
𝐶3 + 𝐶2 + 𝐶1(𝛼 + 3) + (𝛼 + 3)(𝛼 + 2)𝐶0] 𝑒3 = 0. 

Следовательно, 𝑃(𝛼)𝑒3 = 0. 
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Нетрудно заметить, что если 𝛼1, 𝛼2, … , 𝛼𝑚 (−1 < 𝛼1 < 𝛼2 < ⋯ < 𝛼𝑚) 

являются характеристическими числами для операторного пучка 𝑃(𝛼), тогда 

𝜆1 = −(𝛼1 + 4), 𝜆2 = −(𝛼2 + 4),…, 𝜆𝑚 = −(𝛼𝑚 + 4)  

(𝜆𝑚 < 𝜆𝑚−1 < ⋯ < 𝜆1 < −3) составляют спектр оператора 𝐵. В нашем случае 

𝛾∗ ≤ −3, 0 > −𝛾̅ > 𝛾∗, 𝑁 не зависит от 𝑥 и 𝑠. 

Следовательно, для разрешающего оператора 𝑈(𝑥, 𝑠) будет справедлива 

вышеуказанная оценка. 

Нетрудно доказать, что для решения уравнения 𝐴𝑤 = 𝑓 вида 

𝑤(𝑥) = ∫ 𝑈(𝑥, 𝑠)𝑓(̅𝑠)𝑑𝑠
𝑥

0
= ∫ 𝑒∫

𝑑𝑡

𝑡
𝐵

𝑠

𝑥 𝑓(̅𝑠)
𝑑𝑠

𝑠

𝑥

0
                        (8) 

справедлива оценка 

‖𝑤‖𝑄𝛾+33 ≤ 𝐶‖𝑓‖𝑄𝛾+41 . 

Теорема. Пусть порядок интегрального оператора  

𝐾𝜑 = ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑥
𝑥

0
 равен 3, 𝐾(𝑥, 𝑡) удовлетворяет дополнительному 

условию 𝐶0 = lim
𝑥→+0

𝐾(𝑥,𝑥)

𝑥3
, 𝐶1 = lim

𝑥→+0

−𝐾𝑡
′(𝑥,𝑥)

𝑥2
, 𝐶2 = lim

𝑥→+0

𝐾𝑡𝑡
′′(𝑥,𝑥)

𝑥
,  

𝐶3 = lim
𝑥→+0

−𝐾
𝑡3
(3)
(𝑥,𝑥)

𝑥0
, причем 𝐶0 имеет ограниченный обратный, операторный 

пучок 𝑃(𝛼) = 𝐶0(𝛼 + 3)(𝛼 + 2) + 𝐶1(𝛼 + 3) + 𝐶2 + 𝐶3
1

𝛼+4
 удовлетворяет 

условию Леммы 2, 𝑓(𝑥) принадлежит пространству 𝑄𝛾+4
1 . Тогда при 𝛾, 

удовлетворяющем условию −𝛾̅ < −(𝛾 + 4) существует такое 𝛿 > 0, что при 

0 ≤ 𝑥 ≤ 𝛿 уравнение (1) имеет многопараметрическое семейство решений в 

пространстве 𝑄𝛾
0 

𝜑(𝑥) = 𝑧(3)(𝑥) = [𝑧̅(𝑥) + 𝑧0(𝑥)]
(3), 

где 𝑧̅(𝑥) − частное решение уравнения 𝐴𝑧̅ + 𝐷𝑧̅ = 𝑓, 𝑧0(𝑥) − общее решение 

соответствующего однородного уравнения. 

 

 

 



176 

Список литературы 

 

1. Сапронов И.В. Интегральное уравнение Вольтерра в банаховом 

пространстве // Моделирование систем и процессов. 2023. Т. 16. №3. С. 105-114. 

2. Сапронов И.В. Многопараметрическое семейство решений линейного 

интегрального уравнения Вольтерра I рода // Известия вузов. Математика. 2024. 

№5. С. 47-62. 

3. Магницкий Н. А. Линейные интегральные уравнения Вольтерра 

I и III рода // Журнал выч. мат. и мат. физ. 1979. T. 19. № 4. C. 970-988. 

4. Магницкий Н.А. Многопараметрические семейства решений 

интегральных уравнений Вольтерра // ДАН СССР. 1978. T. 240. № 2. C. 268-271. 

5. Магницкий Н.А. О существовании многопараметрических семейств 

решений интегрального уравнения Вольтерра I-го рода // ДАН СССР. 1977. 

T. 235. № 4. C. 772-774. 

6. Крейн С.Г., Сапронов И.В. О полноте системы решений интегрального 

уравнения Вольтерра с особенностью //Докл. РАН. 1997. T. 355. № 4. C. 450-452. 

7. Крейн С.Г., Сапронов И.В. Об интегральных уравнениях Вольтерра с 

особенностями // УМН. 1995. T. 50. Вып. 4. C. 140. 

8. Krein S.G. Singular integral Volterra equations // Abstracts. International 

Congress of Mathematics. Zurich. 3-11 August. 1994. P. 125. 

9. Krein S.G., Sapronov I.V. One class of solutions of Volterra equation with 

regular singularity // Укр. мат. ж. 1997. T. 49. № 3. С. 424-432. 

10. Сапронов И.В. Об одном классе решений уравнения Вольтерра II рода 

с регулярной особенностью в банаховом пространстве // Известия высших 

учебных заведений. Математика. 2004. № 6. С. 48-58. 

11. Сапронов И.В. Многопараметрическое семейство решений 

интегрального уравнения Вольтерра с особенностью в банаховом пространстве 

// Известия высших учебных заведений. Математика. 2005. № 2. С. 81-83. 



177 

12. Сапронов И.В. Уравнение Вольтерра с особенностью в банаховом 

пространстве // Известия высших учебных заведений. Математика. 2007. № 11. 

С. 45-55. 

13. Сапронов И.В. Многопараметрическое семейство решений 

интегрального уравнения Вольтерра с особенностью в банаховом пространстве 

// Известия высших учебных заведений. Математика. 2011. № 1. С. 59-71. 

14. Глушко В.П. Линейные вырождающиеся дифференциальные 

уравнения // ВГУ. 1972. 

15. Сапронов И.В. Линейное интегральное уравнение Вольтерра I рода, 

Вестник ВГУ. Серия: Физика. Математика. (1), 87-96 (2022). 

 

References 

 

1. Sapronov I.V. Volterra integral equation in a Banach space // Modeling of 

systems and processes. 2023. V. 16. No. 3. P. 105-114. 

2. Sapronov I.V. A multi-parameter family of solutions to the linear Volterra 

integral equation of the first kind // Izvestiya vuzov. Mathematics. 2024. No. 5. Pp. 47-

62. 

3. Magnitsky N.A. Linear integral Volterra equations of the I and III kind // 

Journal of vych. mat. and mat. phys. 1979. T. 19. No. 4. C. 970-988. 

4. Magnitsky N.A. Multiparametric families of solutions of Volterra integral 

equations // DAN USSR. 1978. T. 240. No. 2. C. 268-271. 

5. Magnitsky N.A. On the existence of multiparametric families of solutions of 

the Volterra integral equation of the I-th kind // DAN USSR. 1977. T. 235. No. 4. C. 

772-774. 

6. Krein S.G., Sapronov I.V. On the completeness of the system of solutions of 

the Volterra integral equation with singularity //Dokl. RAS. 1997. T. 355. No. 4. C. 

450-452. 



178 

7. Krein S.G., Sapronov I.V. On Volterra integral equations with singularities // 

UMN. 1995. T. 50. Issue. 4. C. 140. 

8. Krein S.G. Singular integral Volterra equations // Abstracts. International 

Congress of Mathematics. Zurich. 3-11 August. 1994. P. 125. 

9. Krein S.G., Sapronov I.V. One class of solutions of Volterra equation with 

regular singularity // Ukr. mat. zh. 1997. T. 49. No. 3. pp. 424-432. 

10. Sapronov I.V. On one class of solutions of the Volterra equation of the 

second kind with a regular singularity in a Banach space // Izvestiya vyshchikh 

uchebnykh uchebnykh. Mathematics. 2004. No. 6. pp. 48-58. 

11. Sapronov I.V. A multiparametric family of solutions of the Volterra integral 

equation with a singularity in a Banach space // Izvestiya vysshikh uchebnykh 

uchebnykh. Mathematics. 2005. No. 2. pp. 81-83. 

12. Sapronov I.V. Volterra equation with a singularity in a Banach space // 

Izvestiya vysshikh uchebnykh institutov. Mathematics. 2007. No. 11. pp. 45-55. 

13. Sapronov I.V. A multiparametric family of solutions of the Volterra integral 

equation with a singularity in a Banach space // Izvestiya vysshikh uchebnykh 

uchebnykh. Mathematics. 2011. No. 1. pp. 59-71. 

14. Glushko V.P. Linear degenerate differential equations // VSU. 1972. 

15. Sapronov I.V. Linear Volterra Integral Equation of the First Kind, Vestnik 

VGU. Series: Physics. Mathematics. (1), 87-96 (2022). 

 

 

 

 

 

 

 

 

 



179 

DOI: 10.58168/OpEq2025_179-190 

УДК 519.6 

ВЛИЯНИЕ ЦВЕТОВЫХ ПРОСТРАНСТВ ПРИ РАСПОЗНАВАНИИ 

ОБЪЕКТА НА ИЗОБРАЖЕНИИ 

INFLUENCE OF COLOR SPACES IN OBJECT RECOGNITION IN AN IMAGE 

Седых Ирина Александровна 

доктор технических наук, доцент, профессор кафедры автоматизированных 

систем управления ЛГТУ, г. Липецк, Россия 

Харитонов Александр Евгеньевич© 

аспирант 1-го года обучения кафедры автоматизированных систем управления 

ЛГТУ, г. Липецк, Россия 

Sedykh Irina Alexandrovna 

D.Sc. of Technical Sciences, Professor, Professor of the Department of Automated 

Control Systems, Lipetsk State Technical University, Lipetsk, Russia 

Kharitonov Alexander Evgenievich 

1st year postgraduate student of the Department of Automated Control Systems, 

Lipetsk State Technical University, Lipetsk, Russia 

 

Аннотация. В статье рассмотрено влияние цветовых пространств RGB, 

HSV, YCbCr, Lab при распознавании объекта на изображении. Работа выполнена 

при помощи скрипта, написанного на языке Python в среде Jupiter Notebook. 

Скрипт позволяет получить такие метрики для сравнения изображений, как 

среднеквадратическая ошибка (MSE) и скорость обработки для каждого 

цветового пространства. Представлены результаты исследования с помощью 

метрик в табличном виде и сделан вывод о проделанной работе. 

Abstract. The article examines the influence of RGB, HSV, YCbCr, Lab color 

spaces in recognizing objects in an image. The work was done using a script written  

 
© Седых И. А., Харитонов А. Е., 2025 



180 

in Python in the Jupiter Notebook environment. The script allows you to get such 

metrics for comparing images as the mean square error (MSE) and processing speed 

for each color space. The results of the study using the metric are presented in tabular 

form and conclusions are made about the work done. 

Ключевые слова: цветовые пространства, RGB, HSV, YCbCr, Lab, 

нейросеть, компьютерная графика, обработка изображений, 

среднеквадратическая ошибка, распознавание объектов. 
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Введение 

На сегодняшний день большое количество информации представлено 

визуально, например, с помощью различных изображений (прямоугольная 

матрица, состоящая из пикселей) [1]. Обработка может происходить путем 

изменения разрешения, кадрирования, замены цвета, удаления объектов, 

наложения нескольких изображений друг на друга, кластеризации или 

сегментации и так далее. 

Одним из способов сегментации изображения является распознавание 

человека на изображении. Более того, на текущий момент нейросети очень 

активно используются в таких процессах, а в их работе нам необходима скорость 

и точность работы, о чем и пойдет речь. 

На сегодняшний день замена цветового пространства при обработке 

используется, например, при распознавании лиц на видео или для подготовки 

изображения к печати, однако применение данного способа при работе в 

распознавании человека целиком на фотографии не рассматривалось. 

Актуальность данной работы обусловливается тем, что при переходе в другое 

цветовое пространство изображение считывается и воспринимается системой 

иначе, чем в привычном RGB пространстве, а значит и распознавание человека 

в другом пространстве может происходить иначе. 
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Целью работы является исследование и реализация методов распознавания 

человека при работе в разных цветовых пространствах, таких как RGB, HSV, 

HSL, YCbCr [2] и Lab [3], их влияние на обработку изображений и приведен 

анализ полученных метрик в результате работы программного обеспечения. 

1. Модель YOLO и цветовые пространства 

1.1. Модель YOLO 

YOLOv5 — это одна из самых популярных моделей для задачи 

обнаружения объектов (object detection) на изображениях и видео. Она способна 

в реальном времени распознавать и локализовать объекты различных классов, 

отмечая их ограничивающими рамками (bounding boxes). YOLOv5 отличается 

высокой скоростью и точностью, что делает её подходящей для применения в 

производственных, автомобильных, медицинских и прочих сферах. 

YOLO (You Only Look Once) — семейство моделей, впервые 

представленное в 2015 году Джозефом Редмоном. Однако YOLOv5 имеет 

немного иную историю: 

• YOLOv1 – YOLOv4 создавались и поддерживались такими 

исследователями, как Джозефа Редмона и Алексей Бочковски (YOLOv4). 

• YOLOv5 была представлена в июне 2020 года компанией Ultralytics. В 

отличие от предыдущих версий, она была написана на Python с 

использованием PyTorch, в то время как YOLOv4 использовала Darknet 

(C/C++). 

Однако YOLOv5 не является официальным продолжением YOLOv4, но 

фактически стала самой YOLOv5 имеет модульную структуру, включающую: 

• Backbone – извлекает признаки из изображения (обычно CSPDarknet). 

• Neck – объединяет признаки на разных уровнях (обычно PANet). 

• Head – делает предсказания (bounding boxes и классы объектов). 

Также YOLOv5 поддерживает аугментацию данных, автоматический анкор, 

квантизацию, экспорт в ONNX, CoreML и TorchScript и многое другое. 
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1.2.  Цветовое пространство RGB 

Цветовое пространство RGB всегда встречается там, где есть светящиеся 

экраны, так как именно сложение цветов излучающих объектов она и описывает. 

Данная модель имеет определённые ограничения в цветовом диапазоне, так как 

может отобразить только те оттенки, которые получаются исключительно за счёт 

свечения пикселей экрана в определённых пропорциях. 

Ниже приведено визуальное представление модели RGB (рис. 1.) 

 

 

Рис. 1. Цветовое пространство RGB 

 

1.3.  Цветовое пространство HSV 

Цветовое пространство HSV – пространство семейства HS, отличия 

заключаются в последней букве и визуальном представлении. Данное 

пространство является более интуитивным, в связи с использованием цветового 

тона (Hue), насыщенности (Saturation) и значения (Value), где последняя буква в 

аббревиатуре может меняться. Ниже приведено визуальное представление 

семейства HS (рис. 2). 
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Рис. 2. Цветовые пространства HSL, HSV 

 

1.4.  Цветовое пространство YCbCr 

1.5.  

Пространство YCbCr использовалось для цифрового кодирования 

информации о цвете, подходящего для сжатия и передачи видео и неподвижных 

изображений, таких как MPEG и JPEG [2]. Ниже приведено визуальное 

представление YCbCr (рис. 3). 

 

Рис. 3. Цветовое пространство YCbCr 
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1.6. Цветовое пространство Lab 

Цветовое пространство Lab было разработано для преодоления недостатков 

предыдущих моделей. У него нет ограничения в цветовом охвате. Главным 

преимуществом данной модели является то, что яркость в ней отделена от цвета, 

что удобно для регулирования контраста, резкости и прочего. Буквы в 

аббревиатуре не обозначают цвета, в данном случае «L» обозначает яркость 

(lightness), а «a» и «b» – некоторые абстрактные координаты. Ниже приведено 

визуальное представление модели Lab (рис. 4). 

 

 

Рис. 4. Цветовое пространство Lab 

 

2. Результаты работы 

Для работы были выбраны реальные фотографии размером 6000x4000 

пикселей, сделанные самостоятельно. Далее будут приведены несколько 

примеров результата обработки изображений в цветовых пространствах RGB, 

HSV, YCbCr, Lab. На фотографиях объект выделяется рамкой, над которой 

указана вероятность правильного распознавания объекта, в нашем случае – 

человека, а ниже приведены время обработки для каждого цветового 

пространства, точность предсказания при распознавании объекта и 

среднеквадратическая ошибка [4] (рис.5 - 8). 
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Рис. 5. Пример результата обработки 1 
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Рис. 6. Пример результата обработки 2 
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Рис. 7. Пример результата обработки 3 
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Рис. 8. Пример результата обработки 4 

 

В ходе анализа метрик можно сделать вывод, что HSV работает быстрее, 

но вероятность предсказания меньше. В RGB пространстве вероятность выше, 

но часто бывают такие ситуации, когда модель распознаёт посторонние объекты, 

при этом эти объекты могут распознаваться неправильно. В YCbCr и Lab 

получены средние между RGB и HSV результаты в точности и скорости 

обработки. 
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Заключение 

В ходе работы было рассмотрено влияние смены цветового пространства 

на распознавание объектов на изображении. Для исследования был реализован 

скрипт на языке Python в среде разработки Jupiter Notebook, который позволяет 

вычислить такие метрики для сравнения обработанного изображения, как 

скорость вычислений при обработке для каждого цветового пространства и 

значение среднеквадратической ошибки. Для обработки использовались 

реальные фотографии размером 6000x4000 пикселей. 

Исходя из результатов можно сказать, что влияние смены цветового 

пространства заметно. Если обработка в RGB пространстве происходит с 

большей точностью вероятности распознавания, то в HSV точность меньше, 

однако обработка происходит быстрее. При этом в RGB чаще встречается 

неправильное или «лишнее» распознавание объектов, что реже проявляется в 

HSV. Обработка в пространствах YCbCr и Lab показала средние результаты.  

Можно также сказать, что HSV является наиболее интересным 

пространством при распознавании объектов, несмотря на более низкую 

вероятность распознавания, так как данное цветовое пространство позволит 

быстрее обработать большую базу изображений при их большом размере в 

6000x4000 пикселей. 
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Аннотация. В работе изучаются взаимосвязи между смешанными 

модулями гладкости в разных метриках функций с монотонными 
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В работе [1] Коляда В.И. доказал неравенство, уточняющее известное 

неравенство Ульянова П.Л. [2,3].  В работе [4] получено аналогичное 

неравенство между смешанными модулями гладкости для функций с 

лакунарными коэффициентами Фурье. В настоящей работе изучается 

взаимосвязь между смешанными модулями гладкости для функций с 

монотонными коэффициентами Фурье. 
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2 1

212121
sincoscossincoscos,,

n n

nnnnnn xnxncxnxnbxnxnaxxff   

),sinsin 221121
xnxnd nn+  где для краткости обозначено ( ) ,

2

1
0cos = t  

( ) =

 



2

0

2

0

212211212
,coscos,

1
21

dxdxxnxnxxfa nn   ( ) =

 



2

0

2

0

212211212
,cossin,

1
21

dxdxxnxnxxfb nn  

( ) =

 



2

0

2

0

212211212
,sincos,

1
21

dxdxxnxnxxfc nn ( )  −=

 



2

0

2

0

212211212
sinsin,

1
21

dxdxxnxnxxfd nn  

коэффициенты Фурье функции .pLf   
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Для функции 
pLf  определим разности с шагами 1h  и 2h положительных 

порядков 1 и 2 соответственно по переменным 1x и 2x  следующим образом: 

( ) ( ) ( )( ),,1 21111

0 1

1

1

11

1
xhnxf

n
f

n

n

h −+



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


−= 



=




  ( ) ( ) ( )( ),,1 22221

0 2

2

2

22

2
hnxxf

n
f

n

n

h −+







−= 



=




  

где 1=








n


 для ,0=n  


=









n
 для ,1=n  

( ) ( )
!

11

n

n

n

+−−
=







  
 для .2n  

Обозначим через  ( )
p

f 21, ,,
21

   смешанный модуль гладкости функции 
pLf   

положительных порядков 1 и 2  соответственно по переменным 1x и ,2x  т.е. 

( ) ( )( ) .sup,, 2

2

1

121
2,1,

21,
p

hh
ih

p
ff

ii




  =

=

 

Пусть дана последовательность чисел     .
)2,1(1211



==
=

innnnn
i

aa  Определим 

разности 

,
212121 110 nnnnnn aaa +−=  ,101 212121 +−= nnnnnn aaa  

( ) .1111011011 212121212121 ++++ +−−== nnnnnnnnnnnn aaaaaa  

Будем говорить, что последовательность  
21nn

a  монотонна и писать 

  ,
21

Ma nn   если числа 
21nn

a удовлетворяют условиям: 0
21
→nna при →1n и любом 

фиксированном ,2n  0
21
→nna при →2n и любом фиксированном 1n                            

(1) 

и 0
2111  nna  для любых натуральных чисел 1n  и .2n                                               

(2) 

Отметим, что из справедливости условий (1) и (2) следует, что 

0
2110  nna и ,0

2101  nna  
1211 mnmn aa  для 21 nn   и 

2111 mnmn aa  для ,21 mm   0
21
nna  для 

всех .2,1, = ini   

Будем писать, что ,pMf  если 

1) ,0

pLf   

2) функция ( )21, xxf  имеет ряд Фурье 

( ) ( ) ( )


=



=


1 1

222111

2 1

21
,

n n

nn xnxnaf   
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где ( )ti  есть tcos или tsin  ( ),2,1=i         

3) коэффициенты 
21nn

a удовлетворяют условиям (1) и (2), т.е.   .
21

Ma nn    

Заметим, что для 0

pLf  условие (1) выполнено. 

Будем писать, что ,pf  если 

1) ,0

pLf   

2) функция ( )21, xxf  имеет ряд Фурье 

( ) ( ) ( )


=



=


0 0

2211

2 1

21

21
,22

n n

nn

nn xxaf   

где ( )ti  есть tcos  или tsin  ( ).2,1=i  

Для неотрицательных функционалов ( )21,, fF  и ( )21,, fG  будем писать, 

что ( ) ( ),,,,, 2121  fGfF   если существует положительная постоянная ,C  не 

зависящая от 1,f и ,2  такая, что  ( ) ( ).,,,, 2121  fGCfF   Если одновременно 

( ) ( )2121 ,,,,  fGfF   и ( ) ( ),,,,, 2121  fFfG  то будем писать 

( ) ( ).,,,, 2121  fGfF   

Имеет место следующая теорема. 

Теорема. Пусть ( ) .2,1,1,0,,
11

,1, =−= i
qp

qpMf iip  Тогда, 

если 
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2 1
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1 1
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qqq
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
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






 
−−

 



   

 

Аналогичная теорема для функции одного переменного доказана в работе 

[5]. Неравенство типа Ульянова для смешанных модулей гладкости установлено 

в работе [6]. Неравенство типа Коляды для полных модулей гладкости (см. [1], 

[7,8]). Неравенство типа Ульянова для полных модулей гладкости (см. [9]). 
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Замечание. В работе [4] для функций с лакунарными коэффициентами, т.е. 

для ,pf   доказано следующее утверждение: 

Пусть ( ) .2,1,1,0,,
11

,1, =−= i
qp

qpf iip  Тогда 

( ) ( ) ( ) 

p

q

ppp

t

dt

t

dt
ttftt

/1

2
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1 1

1

1
21,2121

2 1

21

2121 ,,








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



 
−−−−−−

 



   

                                ( ) ,,,

/1

0 0 2

2

1

1
21,21

1 1

21

q

p

qqq

t

dt

t

dt
ttftt















 
−−

 



                                      (3) 

причем в соотношении (3) знак   нельзя заменить на знак .  

С другой стороны в теореме для функций из 
pM  левые и правые части 

соотношения (3) эквивалентны, т.е. знак    заменяется на знак .  
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Аннотация. В статье исследуются функции двух переменных в 

смешанной метрике. Получены зависимости между полными модулями 

гладкости функции в одной метрике и полными модулями гладкости исходной 

функции в другой метрике. 
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Abstract. Functions of two variables in a mixed metric are investigated in the 

article. Relationships between the complete moduli of smoothness of the function in 

one metric and the mixed moduli of smoothness of the original function in another are 

obtained. 

Ключевые слова: смешанная метрика, полный модуль гладкости. 

Key words: mixed metric, complete moduli of smoothness. 

 

Введем следующие обозначения: −= )2,1(1,
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множество 
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Для неотрицательных функционалов ( )21,, fF  и ( )21,, fG  будем писать, 

что ( ) ( ),,,,, 121  fGfF   если существует положительная постоянная ,C  не 

зависящая от 1,f  и ,2  такая, что  ( ) ( ).,,,, 2121  fСGfF    Если одновременно 

( ) ( )2121 ,,,,  fGfF   и ( ) ( ),,,,, 2121  fFfG   то будем писать 

( ) ( ).,,,, 2121  fGfF   

Ранее в работах ([1], [2], [3]) получен ряд соотношений между полными 

модулями гладкости. Пусть ( ).1,0,0,0

21
 ppLf  Тогда 
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В работе [4] приведены более общие соотношения между полными 

модулями гладкости, из которых следуют перечисленные выше соотношения в 

пунктах а) и б) при ., 2121 qqqppp ====  А именно, имеет место следующая 

теорема 1. 

Теорема 1([4], стр. 70). Пусть ,0,0,
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Замечание 1([4]). Из теоремы 1 при =m следует неравенство 
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В работе [5] утверждения теорема 1 для случаев, когда 

=−= qp
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  или ,1,
22

=−= qp
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  были уточнены при помощи 

интерполяционного метода. А именно, имеет место следующая теорема 2. 

Теорема 2 ([5]). Пусть ( ).1,0,0,  ppLf  Тогда 
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В данной работе результаты теорем 1 и 2 уточняются следующим образом. 
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Замечание 2. Из теоремы 3 следует неравенство 
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где функция ( )t2  при  =  совпадает с ( ),1 t  а при    ( ) ,12 t  а при    

( ) .2

 −= tt  

Замечание 4. Из неравенства (4) следуют (1), (2) и (3). 

В теореме 3 при изучении соотношений между полными модулями 

гладкости рассматривается случай, когда метрика изменяется как по одной 

переменной, так и по второй переменной. В следующих двух теоремах будут 

рассмотрены случаи, когда по одной из переменных метрика изменяется, а по 

оставшейся второй переменной – нет.  

Для сокращения записи введем следующие обозначения: 
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Замечание 5. Если дополнительно ,=m  то   
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Замечание 6. Если дополнительно ,=m  то   
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Замечание 7. Пусть  ( ) .,0,2,1
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теоремы 3 следует неравенство 
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При qqq == 21  из этого неравенства следует неравенство из теоремы 1. Для 

функции одной переменной аналогичное неравенство не имеет места.  
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Аннотация. В статье рассматриваются функции одной переменной. 

Устанавливаются взаимосвязи между модулями гладкости в разных метриках, 

уточняющие известные ранее оценки. 

Abstract. Functions of one variable are considered in the article. The 

relationships between smoothness moduli in different metrics are established, refining 

previously known estimates.  

Ключевые слова: модуль гладкости, метрика. 

Keywords: moduli of smoothness, metric. 

 

Введем следующие обозначения: − pLp 1, множество измеримых 
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Для неотрицательных функционалов ( ),fF  и ( ),fG  будем писать, что 

( ) ( ),,,  fGfF   если существует положительная постоянная ,C  не зависящая от 

f  и ,  такая, что  ( ) ( ).,,  fСGfF    Если одновременно ( ) ( ) ,, fGfF   и 

( ) ( ),,,  fFfG   то будем писать ( ) ( ).,,  fGfF   
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Известны ([1]-[3]) следующие соотношения между модулями гладкости: 
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В работе [4] приведены более общие соотношения между модулями 

гладкости, из которых следуют перечисленные выше соотношения из пунктов а), 

б), в) и г). А именно, имеет место следующая теорема 1. 
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Замечание 1([4]). Из теоремы 1 при =m следует неравенство 
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В работе [5] утверждения в) и г), а также теорема 1 в случаях, когда 
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интерполяционного метода. А именно, имеет место следующая теорема 2. 
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В данной работе результаты теорем 1 и 2 уточняются следующим образом. 
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Замечание 4. Из неравенства (4) следуют оценки (1), (2) и (3). 
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Аннотация. В статье рассмотрен вопрос математического моделирования 

гидродинамики воздушных потоков в газовой печи с учетом расположения, 

геометрических и напорно-расходных параметров газовых форсунок, 

расположения и параметров вентиляционного отверстия, а также формы, 

размеров, положения и материала помещенного в печь объекта. Математическая 

модель используется для оценки влияния вышеперечисленных параметров на 

температурное поле поверхности объекта и вызванную этим неравномерность 

его прогрева. 

Abstract. The article examines the issue of mathematical modeling of air flow 

hydrodynamics in a gas furnace, taking into account the location and geometric and 

pressure-flow parameters of gas nozzles, the location and parameters of the ventilation 

opening, as well as the shape, size, position and material of the object placed in the 

furnace. The mathematical model is used to assess the influence of the above 

parameters on the temperature field of the object's surface and the resulting unevenness 

of its heating. 

Ключевые слова: математическое моделирование, термоконвекция. 

Key words: mathematical modeling, thermal convection. 

 

Технологические процессы, включающие в себя стадии нагрева 

полуфабриката или готового продукта в газовых конвекционных печах широко 

используются в машиностроении, металлургии и пищевой промышленности. 
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Методики расчета времени прогрева, необходимого для достижения заданных 

технологией температурных полей в объекте, базируются на тепловом балансе 

тепловых потоков (поступающих в печь, отраженных от изделия, отводимых из 

зоны нагрева и затраченных на нагрев изделия и окружающей среды [1]). В 

расчетах обычно фигурирует средняя температура изделия или температура 

отдельной зоны нагрева [1]. Однако, такие методики не учитывают сложную 

термическую картину, стратификацию и «мёртвые» зоны, возникающие в 

процессе термоконвективного нагрева [2]. 

Для принятия решения о применимости конкретной расчетной методики 

предлагается использовать сопряженную модель внутреннего пространства печи 

и расположенного в ней нагреваемого объекта, формализующую 

газодинамические и тепловые потоки с учетом геометрических параметров 

системы (рис. 1).  

Г1

Г2

Г3

Д1

Г1

Г2

Г3

Д1

Д2

Г4

 

Рис. 1 Расчетные схемы 

 

Для оценки пространственной динамики потоков рассмотрены схемы с 

объектом квадратного сечения, расположенным в печи и без него (рис. 1).  
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Уравнения сохранения импульса, энергии, массы [3] 

 

( ) ( ) 
( )

( )

( )

T

1

*
* * * *

2

:ρ ρ μ +ρ ;

ρ 0;

ρ ρ λ ;

: ρ λ ;

р р

р

u
Д u u p u u g

t

u

T
c c u T T

t

T
Д c T

t

  +  =  − +  +   

  =

 

+  =  





=    

  (1) 

где Д1 – домен воздушного пространства печи, Д2 – домен объекта,  u  - скорость, 

м/с; p – давление, Па; t – время, с; μ – динамическая вязкость, Па·с; g  - ускорение 

свободного падения, м/с2; ρ, ρ* – плотность,  кг/м3; Т, Т* – температура, К; ср, ср
* 

– удельная теплоемкость, Дж/(кг·К); λ, λ* – коэффициент теплопроводности 

воздуха и объекта (индекс *), Дж/(см2К). Начальные условия 
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начальные значения давления, температуры, α – коэффициент теплоотдачи к 

воздуху окружающей среды, Вт/(м2·К); n  – единичный вектор нормали к 

поверхности; осT  – температура окружающей среды, К.  

Вычислительный эксперимент проведен на примере печи ТХМ-ДО-

50.130.30/1100 и заключался непрерывной подаче горячего воздуха в объём печи. 

Система (1) решена численно методом конечных элементов в Comsol 

Multiphysics. В качестве модельных сред использованы воздух и сталь. 

Результатами моделирования представлены на (рис. 2). 

Разработанная модель может быть использована для исследования 

пространственной динамики нагрева воздуха в печи и в объекте.  
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а)                                                                 б) 

  

в)                                                                 г) 

Рис. 2 Температурные и тепловые поля  

 

Список литературы 

 

1. Расчёт нагревательных и термических печей: Справ. Изд. Под ред. 

Тымчака В.М. и Гусовского В.Л. Авт.: Василькова С.Б., Генкина М.М., 

Гусовский В.Л., Лифшиц А.Е., Масалович В.Г., Перимов А.А., Спивак Э.И., 

Тымчак В.М. М.: Металлургия, 1983. 480 с. 

2. Гетлинг А.В. Конвекция Рэлея-Бенара. Структуры и динамика М.: 

Эдиториал УРСС, 1999. — 248 с. 



217 

3. Конвекция и тепловые волны Лыков А.В., Берковский Б.М. М.: Энергия, 

1974 – 336 с. 

 

References 

 

1. Calculation of heating and thermal furnaces: Reference Edition by Tymchak 

V.M. and Gusovsky V.L. Authors: Vasilkova S.B., Genkina M.M., Gusovsky V.L., 

Lifshits A.E., Masalovich V.G., Perimov A.A., Spivak E.I., Tymchak V.M. M.: 

Metallurgia, 1983. 480 p. 

2. Getling A.V. Rayleigh-Benard convection. Structures and dynamics M.: 

Editorial URSS, 1999. - 248 p. 

3. Convection and heat waves Lykov A.V., Berkovsky B.M. Moscow: Energy, 

1974 – 336 p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



218 

DOI: 10.58168/OpEq2025_218-224 

УДК 519.21 

ТОПОЛОГИЧЕСКИЙ КРИТЕРИЙ ПЕРКОЛЯЦИИ И ОБОБЩЕНИЕ 

ТЕОРЕМЫ ХАРРИСА–КЕСТЕНА 

TOPOLOGICAL PERCOLATION CRITERION AND GENERALIZATION OF 

THE HARRIS–KESTEN THEOREM 

Солонченко Роман Евгеньевич© 

аспирант, кафедра программного обеспечения вычислительной техники и 

автоматизированных систем, Белгородский государственный технологический 

университет им. В.Г. Шухова, г. Белгород, Россия 

Solonchenko Roman Evgenievich 

Postgraduate Student, Department of Computer Engineering and Automated Systems 

Software, Belgorod State Technological University named after V.G. Shukhov, 

Belgorod, Russia 

 

Аннотация. В статье предложен новый топологический критерий 

перколяции для планарных графов, позволяющий описать появление 

бесконечного кластера через геометрические свойства конфигураций. С 

использованием данного критерия доказано обобщение теоремы Харриса–

Кестена о критической вероятности на более широкий класс перколяционных 

моделей. 

Abstract. The article proposes a new topological criterion of percolation on 

planar graphs, which characterizes the emergence of an infinite cluster through the 

geometry of configurations. Using this criterion, a generalization of the Harris–Kesten 

theorem for a broader class of models is proved. 

Ключевые слова: перколяция, бесконечный кластер, критическая 

вероятность, топология, двойственный граф. 
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Введение 

Перколяция – одна из фундаментальных моделей вероятностной теории 

фазовых переходов. Она была впервые предложена в работе С. Р. Бродбента и 

Дж. М. Хаммерсли, где исследовалось распространение жидкости через 

случайную среду [1]. В классической постановке рассматривается бесконечная 

решётка (например, квадратная решётка) со случайно «включёнными» 

элементами (рёбрами или вершинами). Каждое ребро решётки может быть 

открытым (проводящим) с вероятностью p или закрытым с вероятностью 1-p 

независимо друг от друга. При достаточно больших p возникает сквозной 

кластер, соединяющий отдалённые области решётки, что интерпретируется как 

протекание («перколяция») через систему [1]. С другой стороны, при малых p 

кластеры остаются ограниченными, и глобальной связи не возникает. 

Важнейшая характеристика такой системы – критическая вероятность 𝐩𝐜, 

разделяющая режимы отсутствия и наличия бесконечного кластера. Для p < 𝐩𝐜 

перколяция почти наверняка отсутствует (все кластеры конечны), тогда как для 

p > 𝐩𝐜с ненулевой вероятностью существует бесконечный кластер. Классическая 

теорема Харриса–Кестена утверждает, что для независимой рёберной 

перколяции на бесконечной квадратной решётке критическая вероятность равна 

𝐩𝐜 =
𝟏

𝟐
 [2, 3]. Иными словами, если каждое ребро, проводящее с вероятностью 

50%, то почти наверняка бесконечного проводящего кластера не возникает, а вот 

при любой большей вероятности сквозной кластер появляется с ненулевой 

вероятностью. Это фундаментальный результат для двумерных перколяционных 

моделей. 

Следует отметить, что значение 𝐩𝐜 =
𝟏

𝟐
 является специфическим для строго 

симметричных решёток. Для иных решёток или типов перколяции критическая 
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вероятность, как правило, отличается от 1/2. В таблице 1 приведены известные 

значения 𝐩𝐜 для некоторых моделей перколяции на планарных решётках [3, 4]. 

Таблица 1 – Критические значения вероятности перколяции для некоторых 

бесконечных решёток 

| Решётка               | Тип перколяции   | 𝐩𝐜        | 

| Квадратная Z²     | рёберная (bond)    | 0.5         | 

| Квадратная Z²     | вершинная (site)   | ≈0.5927 | 

| Треугольная        | вершинная (site)   | 0.5         | 

| Треугольная        | рёберная (bond)    | ≈0.3473 | 

| Шестиугольная   | вершинная (site)   | ≈0.697   | 

Как видно из таблицы 1, значение критической вероятности существенно 

зависит от структуры решётки и вида перколяции. Естественным является 

вопрос: для каких структур сетей критическая вероятность равна 0,5? Другими 

словами, можно ли указать общий критерий, при выполнении которого 

появляется «самодвойственная» симметрия, приводящая к 𝐩𝐜 =
𝟏

𝟐
? 

В данной работе сформулирован топологический критерий перколяции, 

отвечающий на этот вопрос для широкого класса планарных графов. На основе 

этого критерия мы доказываем обобщённую теорему Харриса–Кестена о 

значении 𝐩𝐜 и показываем, что несколько известных результатов (например, для 

квадратной и треугольной решёток) укладываются в единый теоретический 

каркас. 

Топологический критерий перколяции 

Рассмотрим независимую перколяционную модель на бесконечном 

планарном графе G. Будем говорить об открытых и закрытых рёбрах в 

соответствии с их состоянием (проводящее или нет). Под кластером понимается 

максимальное связное множество смежных по G открытых рёбер (или вершин, в 

случае вершинной перколяции). Бесконечный кластер – это кластер, 
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содержащий бесконечно много вершин графа. Событие перколяции означает 

существование хотя бы одного бесконечного кластера в конфигурации. 

Для планарных графов справедливо следующее утверждение, 

связывающее существование бесконечного кластера с геометрическими 

(топологическими) свойствами конфигурации открытых и закрытых рёбер. 

Лемма 1 (топологический критерий перколяции). Пусть G – планарный 

граф, и рассматривается модель независимой перколяции на рёбрах графа. 

Обозначим через G^* граф, планарно двойственный к G. Тогда верна 

эквивалентность событий: 

• происходит бесконечная перколяция на G (существует бесконечный 

открытый кластер); 

• во всех достаточно больших циклах (замкнутых контурах) графа G^* 

по крайней мере одно ребро не является закрытым. 

Другими словами, бесконечный открытый кластер существует тогда и 

только тогда, когда никакой конечный цикл из закрытых рёбер не отделяет 

бесконечную область на плоскости. 

Доказательство основано на свойстве планарной двойственности и теореме 

Жордана о кривой. Если существует бесконечный открытый кластер в G, то 

любая попытка окружить его конечным циклом из закрытых рёбер G^ потерпит 

неудачу – такой цикл обязательно содержит хотя бы одно открытое ребро (иначе 

он образовал бы замкнутую кривую, отделяющую бесконечный кластер от 

«бесконечности», что противоречит неограниченности кластера). Обратно, если 

бесконечного кластера нет, то все открытые кластеры конечны. В этом случае 

можно показать, что вокруг любого заданного узла решётки G существует 

замкнутый цикл из закрытых рёбер G^, отсекающий этот узел от бесконечности 

(путём обхода границ кластеров конечного радиуса). Таким образом, отсутствие 

бесконечного кластера эквивалентно существованию «барьера» из закрытых 

рёбер – по крайней мере один такой замкнутый цикл присутствует на всех 

масштабах. 
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Лемма 1 даёт топологический критерий: модель не имеет сквозного 

кластера, если можно найти достаточно большие замкнутые контуры из 

непроводящих связей, и наоборот, перколяция возникает, когда никакие 

конечные барьеры не могут удерживать кластер от разрастания. Этот критерий 

является основой для доказательства классической теоремы Харриса–Кестена и 

её обобщений. 

Обобщение теоремы Харриса–Кестена 

На основе леммы 1 можно получить условие, при котором критическая 

вероятность равна 0,5 для широкого класса решёток. Вначале напомним идею 

доказательства теоремы Харриса–Кестена для квадратной решётки, опираясь на 

топологический подход. Для решётки Z² рассмотрим событие 𝐇𝐧: «существует 

путь из открытых рёбер, соединяющий левую и правую границы квадратной 

области размером n × n». Аналогично определим 𝐕𝐧 как событие наличия пути 

из закрытых рёбер, соединяющего верхнюю и нижнюю границы этого же 

квадрата. 

Формально: 𝐏𝟎,𝟓(𝐇𝐧) =
𝟏

𝟐
 (1) 

При p = 0.5 вероятность появления бесконечного кластера θ(p) 

удовлетворяет 𝛉(𝟎, 𝟓) ≤ 𝐥𝐢𝐦
𝐧→∞

𝐏𝟎,𝟓(𝐇𝐧) =
𝟏

𝟐
. Но из леммы 1 известно, что при 

наличии хотя бы 50% проводящих связей бесконечный кластер не возникает 

почти наверняка. Значит, θ(0.5) = 0, и потому 𝐩𝐜 ≥
𝟏

𝟐
. 

С другой стороны, строгие оценки и предельный переход показывают, что 

даже на бесконечной решётке при p > 0.5 с ненулевой вероятностью существует 

сквозной кластер: θ(p) > 0 для любого p > 0.5, то есть 𝐩𝐜 ≤
𝟏

𝟐
. Объединяя оценки, 

получаем: 𝐩𝐜 =
𝟏

𝟐
. 

Теорема 2. Пусть планарный граф G и его двойственный граф G* 

однородны и обладают свойством самодвойственности (то есть G изоморфен G*; 
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пример — квадратная решётка для рёберной перколяции или треугольная — для 

вершинной). Тогда критическая вероятность 𝐩𝐜 =
𝟏

𝟐
. 

Благодаря однородности графа вероятности пересекающих событий 𝐇𝐧 и 

𝐕𝐧 равны при p = 0.5 вследствие симметрии. Самодвойственность означает, что 

события 𝐇𝐧 и 𝐕𝐧 взаимно исключают друг друга и в совокупности исчерпывают 

все исходы. Следовательно, при p = 0.5 вероятность пересечения равна 1/2. По 

аналогии с квадратной решёткой, θ(0.5) = 0, значит 𝐩𝐜 ≥
𝟏

𝟐
. А при p > 0.5 — θ(p) 

> 0, так как барьеры из закрытых рёбер не могут сдерживать рост. Отсюда: 𝐩𝐜 ≤

𝟏

𝟐
, значит 𝐩𝐜 =

𝟏

𝟐
. 

Следствие: во многих симметричных случаях критическая вероятность 

равна 1/2. Например, для вершинной перколяции на треугольной решётке 

(двойственной к шестиугольной) доказано 𝐩𝐜 =
𝟏

𝟐
. Ранее этот результат получен 

методами симметрии (звезда–треугольник) и подтверждён численно. 

Топологический подход даёт строгое обоснование. Пример: решётка на 

поверхности тора (сосуд Клейна), самодвойственна — теорема 2 применима и 

здесь. 

Заключение 

В работе разработан общий подход к анализу порога перколяции на основе 

топологических свойств конфигураций. Предложен критерий, связывающий 

существование бесконечного кластера с отсутствием замкнутых барьеров из 

непроводящих элементов. Этот критерий позволил обобщить классическую 

теорему Харриса–Кестена о критическом значении вероятности для двумерных 

решёток. Показано, что для широкого класса планарных сетей, обладающих 

самодвойственной симметрией, критическая вероятность перколяции составляет 

0,5. Результаты согласуются с ранее известными частными случаями и дают 

единое объяснение этому явлению. 
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Перспективы дальнейших исследований включают применение 

топологического критерия к более сложным системам (например, перколяции в 

моделях со случайными дефектами структуры или на негомогенных графах), а 

также изучение аналогов критериев в задачах более высокой размерности. 
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В бaнaховом пространстве E рассмотрим операторное уравнение с 

начальным условием 

( , )
dx

Ax f t x
dt

+ =
  

(0 1),t      (1) 

(0) .x x=       (2) 

Здесь ( )x t – неизвестная функция, с областью определения на отрезке на 

 0,1  с множеством  значений в , ( , )E f t x , при   0,1t – нелинейных оператор, A  – 

действующий в E  линейный оперaтор с облaстью определения ( )D A , 0x – 

элемент, принадлежащий области ( )D A . Функцию ( )x t  будем считать решением 

задачи (1) – (2), если у неё существует непрерывная производная 
dx

dt
 на  0,1 ,  

( )x t , ( )Ax t   непрерывны на этом отрезке и ( )x t  удовлетворяет  (1) - (2). 

Предположим также, что A – сильно позитивный оператор, то есть 

порождает аналитическую подгруппу ( )T t . На функцию ( , )f t x наложим 

следующие ограничения:  

1 1 2 2 1 2 1 2

1 2 1 2

( , ) ( , ) ( )( )

(0 , 1, , ,0 1).

f t x f t x c R t t x x

t t x x R





−  − + −

    
   (3) 

Из [1] известно, что при этих условиях  существует единственное решения 

задачи (1)–(2) на  отрезке    0, 0,1t  , и для этого решение ( )x t   справедливо  

уравнение 

0

0

( ) ( ) ( ) ( , ( )) .

t

x t T t x T t s f s x s ds= + −    (4) 

Метод Тонелли, по которому будем искать приближенное решение ( )nx t
 

задачи (1) – (2), состоит в следующем. 
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По 1,2,...n =  и 1/h n=  найдём ( )nx t  как решение задачи (5) - (6), где 

( )
( ) ( , ( ))n
n n

dx t
Ax t f t x t h

dt
+ = −  (0 1),t     (5) 

0( )nx t x=  ( 0).h t−        (6) 

Функцию ( )nx t  будем называть решением задачи (5) – (6),  в том случае, 

если на отрезке  0,1  существуют непрерывные производные 
( )ndx t

dt
, и ( )nx t  , ( )nAx t  

тоже непрерывны на этом отрезке, к тому же ( )nx t  удовлетворяет (5) - (6). 

Решение ( )nx t  будем находить последовательно на отрезках  0,h ,  , 2 ...h h  

из следующего равенства 

0

0

( ) ( ) ( ) ( , ( )) .

t

n nx t T t x T t s f s x s h ds= + − −      

Задачи (1) – (2), разрешима локально, а задача (5) – (6) имеет решение на 

всем отрезке  0,1 . 

Будем исследовать сходимость ( )nx t  к ( )x t  и ( )nAx t  к ( )Ax t  на отрезке  

 0, t , и, в случае, если ( )x t  существует на всем отрезке  0,1 , докажем сходимость 

на всем отрезке  0,1 . 

Теорема 1. Задача (1) – (2) имеет единственное решение на отрезке  0, t ,  

удовлетворяющее оценке 

( ) ( )nx t x t h−         (7) 

где const= . 

Доказательство.  Существование решения, его единственность доказаны в 

[1]. Для доказательства оценки (7) рассмотрим две леммы. 

Лемма 1. На отрезке  0, t  для решения ( )nx t  выполнено условие ( )nx t R . 

Лемма 2. Производная ' ( )nx t  является ограниченной функцией на каждом 

ограниченном в E множестве, то есть 

 ' ( ) ( )nx t P R  (0 1,t  ( ) ).nx t R     
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Воспользуемся условием (3) и этими леммами. Получим следующую 

оценку 

0

0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

n n n

t t

n n

o

x t x t Wc R x s x s h ds

Wc R x s x s ds Wc R P R h Wc R x s x s ds

−  − − +

+ −  + −



 

 

Из этого неравенства следует: 

( ) ( )nx t x t h−    

где ( )
( ) ( ) cW R

cW R P R e= . 

Таким образом, теорема доказана. 

Так как A  – сильно позитивный оператор, то при любых действительных 

   определены его дробные степени. 

В [1] показано: отрицательные дробные степени оператора A  являются 

ограниченными. Таким образом, из сходимости ( )nA x t  и ( )A x t  должна 

следовать сходимость ( )nx t  и ( )x t . Докажем это утверждение. 

Теорема 2. На отрезке  0, t  справедлива оценка 

( ) ( ) ( )nA x t A x t h  −        (8) 

где ( ) ,0 1h const =   . 

Доказательство. Оценим ( ) ( )nA x t A x t − . 

Получаем: 

0

0

( ) ( )
( ) ( ) ( , )

( )

( , ) ( ) .
( )

t

n

n

t

x s x s
A x t A x t c R ds

t s

ds
c R P R h

t s

 









−
−  +

−

+
−





 

Пользуясь теоремой 1, получаем оценку (8) 

Таким образом, теорема доказана. 

Докажем оценку (8) при α = 1. В этом случае будет справедливо 

утверждение о сходимость производной приближенного решения к производной 

точного решения.  
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Пусть оператор ( , )f t x  удовлетворяет дополнительным ограничениям. 

Полагаем следующее: 

существует производная Фреше '( , )xf t x ,  удовлетворяющая неравенству: 

( )
( )

1 1 2 1 1 2 1 2( )

1 2

'( , ) '( , ) ( )

,  ,  ,  (0,1) .

x x Z E E

E E

f t x f t x C R t t x x

x x R

 

 

−  − + −

 

 (9) 

 

При доказательстве оценки (8), будем опираться на следующие леммы 

Лемма 3. Справедливо следующее равенство: 

1 2 1 1 2 1 2( , ) ( , ) ( , , )( )f t x f t x K t x x x x− = − , 

где 

1

1 2 1 2

0

( , , ) '( , (1 ) )xK t x x f t x x d  = + − , 

и следующая оценка: 

( )
( )

1 1 1 2 2 2 1 2 1 2 1 2( )

1 2 1 2 1 2

( , , ) ( , , ) ( )

0 , 1,  ,  ,  ,   .

Z E E E

E E E E

K t x y K t x y C R t t x x y y

t t x x y y R

  
−  − + − + −

  

 

Пусть ( ) ( ) ( )h nt x t x t h = − − . 

Лемма 4. Справедливо следующее неравенство: 

( ) ( )
( )

h h

Qh
t h t t h

t h 
 + + − + 

+
, где 0 1  , Q const= . 

Теорема 3. Если оператор A сильно позитивен, оператор ( , )f t x  

удовлетворяет условию (3), оператор '( , )xf t x   удовлетворяет условию (9), 

 на отрезке [0, *]t  верна оценка 

( ) ( )nAx t ax t M h−   ,  где  M const= . 

Доказательство.  Введем обозначение: 

( ), ( ), ( ) ( )nK t x t h x t K t− = . 
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Следовательно, 

( )

( ) ( )

0

1 2 3

0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) .

t

n n n

t

n n

Ax t Ax t AT t s K s s t ds

AT t s K s K t t ds T t K t t J J J

 

 

− = − − +

+ − − + − = + +





 

Будем оценивать каждое слагаемое. 

Очевидно,  что 2 2J N h , 3 3J N h , где 2N , 3N  – константы. 

1J  рассмотрим в каждом из трёх случаев: 

1) 0 t h  ,       2) 2h t h  ,     3) 2t h . 

В случае 1) и 3) очевидно, что 1 1J N h . 

В случае 2) воспользуемся леммой 4 и получим: 

1

1 1( )
h

ds
J Qh Qh

t s s −
 

−  . 

  Выберем ( )1 2 3max , , , .M N N N Q=   

Таким образом, теорема доказана. 

Теорема 4. ( )nA x t  сходится к ( )A x t  при 0 1   на промежутке [0,1] . 

Доказательство. Пусть R  – константа. Ранее доказано, что на отрезке 

[0, *]t   верна оценка (8). Зафиксируем h ( Rh
Z

 ), и получим на этом отрезке 

( ) ( )nx t x t R−  .  

Рассмотрим множество  :  0 t  | ( ) ( )nH x t x t R =   −  . Множество H   

ограничено. Следовательно, существует ( )h  верхняя граница этого множества, 

где ( )h H  . 

Очевидно, что ( ) 1h = , в случае, если приближенные решения ( )nx t  строить 

по Rh
N

 , при этом считаем, что N  – достаточно велико, то есть  приближенные 

решения будем строить по достаточно малому h . Таким образом получим, что 

( )nx t  сходится к ( )x t  на отрезке [0,1] . 
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Рассматривая ( ) ( )nA x t A x t −  при 0 1  . Получим оценку (8) на всем 

отрезке [0,1] . 

При 1 =  доказательство оценки (8) аналогично доказательству теоремы 3. 

Таким образом, теорема доказана. 
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Аннотация. В статье рассмотрены возможности применения 

роботизированного манипулятора для задач лесовосстановления. Предложена 

концепция определение проходимости участка лесной местности с 

использованием данных с резистивного датчика давления и imu-датчика. 

Определены задачи для дальнейшего исследования. Предложенная концепция 
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может применяться в построении карты лесной местности для уточнения 

наличия препятствий по ходу движения мобильной платформы. 

Abstract. The article discusses the possibilities of using a robotic manipulator 

for forest restoration tasks. The concept is proposed to determine the patency of the 

area of the forest area using data from a resistive pressure sensor and IMU-sensor. The 

tasks for further research are defined. The proposed concept can be applied in building 

a forest area to clarify the presence of obstacles in the direction of the mobile platform. 

Ключевые слова: лесовосстановление, роботизированные системы, 

роботы-манипуляторы, автоматизация технологических процессов, резистивный 

датчик давления. 

Keywords: foresting, robotic systems, robots-manipulators, automation of 

technological processes, resistant pressure sensors. 

 

Введение 

Лесовосстановление является обязательным мероприятием на месте 

проведенных вырубок леса. Лесовосстановление бывает трех видов: 

естественное, искусственное и комбинированное. Искусственное 

лесовосстановление наиболее востребовано в районах с неблагоприятными 

условиями. К таким районам можно отнести районы крайнего севера. Суровые 

условия достаточно сильно ограничивают возможности ручного труда. В связи с 

этим актуальна задача роботизации лесовосстановительных работ [1]. 

Для проведения лесовосстановительных работ в первую очередь 

необходима мобильная колесная платформа, позволяющая доставить устройство, 

выполняющее посадочные работы, и саженцы до места проведения работ [2]. 

Важным элементом конструкции роботизированного устройства являются 

манипуляторы. Они применяются и для решения задач навигации, и для 

выполнения различных производственных работ. На рабочий орган 

манипулятора могут быть прикреплены устройства для захвата, ковш, различные 

датчики [3].  
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В статье [1] предложена концептуальная модель, позволяющая решать 

различные задачи, которые могут возникать при роботизации 

лесовосстановительных работ. К таким задачам можно отнести движение по 

пересеченной местности и мониторинг окружающей среды. Для этого 

используются различные датчики, например, датчик температуры/давления, 

камера и т. д. 

Для выполнения посадок необходимо иметь карту местности. Построение 

карты может также быть возложено на роботизированное устройство. Это может 

быть мобильная платформа с установленными на ней лидаром и видеокамерой 

[4]. Такая система позволит определить препятствия, находящиеся на пути 

робота, например, сухой пень, дерево или большой камень. Но также необходимо 

понимать, возможно ли проехать по какой-то части местности. Например, на 

пути может оказаться болотистый участок. Построение карты и определение 

почвы можно осуществлять с использованием дронов [5]. 

В лесной местности районов крайнего севера описанные выше решения 

могут быть неприменимы в случае плохих погодных условий, например, 

использование камер во время осадок ухудшает картинку и добавляет лишние 

шумы, что может привести к ошибкам идентификации. Для уточнения данных, 

получаемых с неустойчивых к визуальным помехам датчиков, предлагается 

использовать сенсорный подход. 

Для определения не только факта касания, но и уточнения силы, с которой 

робот взаимодействует с препятствием, можно использовать резистивный датчик 

давления (далее-датчик силы) [6].  

С помощью датчика силы можно определять не только класс объекта, 

находящегося на пути [7], но и повлиять на саму местность, внести 

корректировки в расположение подвижных объектов. Например, можно 

определить, что если препятствие представляет собой непреодолимый объект, то 

его нужно обязательно объезжать, а если, препятствие можно сдвинуть, то его 

можно вообще удалить из рассматриваемой местности, а если его можно 
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наклонить, то в этом случае оно является преодолимым и «сквозь» него можно 

проехать. 

Определение проходимости участка лесной местности 

Рассмотрим применение датчика силы для определения возможности 

прохода по земельному участку при выполнении лесовосстановительных работ. 

В первую очередь необходимо определить, является ли почва достаточно твердой 

для прохода мобильной платформы. Для принятия такого решения 

предназначены специальные устройства такие, как электронные твердомеры 

почвы или же пенетрометры, измеряющие плотность/сопротивление почвы при 

его введении в почву. Но такие датчики не позволяют вести мониторинг 

показаний, вследствие чего невозможен и анализ данных.  

Для определения возможности прохода по участку, предназначенному для 

лесовосстановления, предлагается использовать комбинацию датчика силы и 

imu-датчика.  

Предполагаем, что платформа с установленным на ней манипулятором 

движется по горизонтальной поверхности. На конечный эффектор манипулятора 

крепится щуп. При этом щуп содержит датчик силы и imu-датчик (рисунок 1). 

 

                   

                           (a)                                                (b) 

Рис. 1. (a) - модель манипулятора с 4 степенями свободы, (b) - модель щупа, 

прикрепленного на конечный эффектор манипулятора.  

 

Участок для лесовосстановления разбивается на небольшие по площади 

зоны. Если в зоне по ходу движения находится визуально определяемое 
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препятствие (например, дерево или большой камень), то этот участок не 

посещается. Проверяются только визуально свободные участки.  

Определение возможности движения платформы в каждой зоне может 

происходить следующим образом. Манипулятор совершает движение щупа 

ровно сверху вниз в визуально свободную зону. Датчик силы фиксирует факт 

касания препятствия, которое может находиться в почве, также возможно 

фиксирование плотности почвы. Если почва слабо или среднеплотная, то imu-

датчик поможет определить глубину проникновения щупа. Если окажется, что 

щуп погружен ниже уровня земли, на которой стоит платформа, плюс высота 

колес, то этот участок платформа преодолеть не сможет. 

При этом возникает ряд вопросов, которые требуют дальнейшего 

исследования: 

• как осуществить прямолинейное вертикальное движение 

манипулятора;  

• в какой момент манипулятору следует остановиться; 

• как разделить участок на зоны; 

• какого размера должны быть зоны; 

• достаточно ли одного маневра щупа для принятия решения о типе 

всей зоны; 

• что считать слабым, средним и сильным давлением; 

• следует уточнить характеристики участка, где платформа сможет 

пройти, а где – нет. 

Решение многих из этих вопросов требует натурных экспериментов, 

которые достаточно сложно провести, так как они требуют наличия 

разнообразных по условиям почвы участков, а также готовый для эксплуатации 

манипулятор с установленными щупом, датчиками, аппаратным и программным 

обеспечением для сбора и обработки данных. В качестве альтернативы можно 

использовать подход на основе моделирования поверхности земельного участка 

и манипулятора. Подходящей средой для этого может стать симулятор Gazebo [8]. 
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Он полностью учитывает все физические характеристики объектов и позволяет 

программировать действия оборудования.  

Заключение 

Предложен подход для решения задачи картирования участков 

лесовосстановления с использованием мобильной роботизированной 

платформы. На платформе должен быть установлен манипулятор, на концевом 

эффекторе которого размещены резистивный датчик давления и imu-датчик. 

Предложенная конструкция применима для определения проходимости участка 

лесной местности. 
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Рассматривается оператора энергии трехмагнонных систем в модели 

Гейзенберга в двумерном и трехмерном решетке и исследуется структура 

существенного спектра и дискретный спектр системы. В работе [1] 

трехмагнонная система была рассмотрена в двумерной изотропной и 

анизотропной ограниченной ферромагнитной решетке, и были исследавоны 

спектр и связанные состояние (СС) системы с помощью численных методов. В 

работе [2] трехмагнонная система была рассмотрена в изотропной 

негейзенберговской ферромагнитной модели со значениями спина единицы с 

взаимодействием ближайших соседей. Изучена структура существенного 

спектра системы и была получена верхняя и нижняя оценка для количества 

трехмагнонных СС системы. В данной работе рассматривается оператор энергии 

трехмагнонных систем в модели Гейзенберга и исследуется структура 

существенного спектра и дискретный спектр системы в одномерном 

ферромагнетике. Гамильтониан рассматриваемой системы имеет вид 

𝐻 = 𝐽∑ (𝑆𝑚𝑆𝑚+𝜏).𝑚,𝜏                                               (1) 

Здесь  𝐽 < 0 − параметр билинейного обменного взаимодействие между атомами 

ближайших соседей в решетке, 𝑆𝑚 = (𝑆𝑚
𝑥 , 𝑆𝑚

𝑦
, 𝑆𝑚

𝑧 ) − оператор атомного спина 

узла 𝑚  𝜈 − мерной целочисленной решетки 𝑍𝜈 , а  𝜏 = ±𝑒𝑗, 𝑗 = 1,2,… , 𝜈, где   𝑒𝑗− 

единичные орты, т.е. суммирование ведется по ближайшим соседям. Положим 

𝑆𝑚
± = 𝑆𝑚

𝑥 ± 𝑖 𝑆𝑚
𝑦
. Обозначим через 𝜑0 вектор, называемый вакуумным и 

однозначно определяемый условиями:  𝑆𝑚
+𝜑0 = 0,  𝑆𝑚

𝑧 𝜑0 =
1

2
𝜑0, ||𝜑0|| = 1.  

Векторы  𝑆𝑝
−𝑆𝑞

−𝑆𝑟
−𝜑0 описывает состояние системы трех магнонов, находящихся 

в узлах 𝑝, 𝑞 и 𝑟. Замыкание пространства, образованного всевозможными 

линейными комбинациями этих векторов, обозначим через ℋ3. Оно называется 

трехмагнонным пространством оператора 𝐻.  

Теорема 1. Подпространство ℋ3 инвариантно относительно оператора 𝐻, и 

cужение 𝐻3 оператора 𝐻 на подпространство ℋ3 является ограниченным 

самосопряженным оператором. Он порождает ограниченный самосопряженный 
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оператор 𝐻̅3, действующий в пространстве  𝑙2
𝑎𝑠 по формуле (𝐻̅3𝑓)(𝑝, 𝑞, 𝑟) = 

= 𝐽∑[𝛿𝑝,𝑞+𝜏
𝜏

+ 𝛿𝑝+𝜏,𝑞 + 𝛿𝑝+𝜏,𝑟 + 𝛿𝑝,𝑟+𝜏 + 𝛿𝑞,𝑟+𝜏 + 𝛿𝑞+𝜏,𝑟 − 6]𝑓(𝑝, 𝑞, 𝑟) − 

−
1

2
𝛿𝑝−𝜏,𝑞𝑓(𝑝 − 𝜏, 𝑞, 𝑟) −

1

2
𝛿𝑝−𝜏,𝑟𝑓(𝑝 − 𝜏, 𝑞, 𝑟) −

1

2
𝛿𝑞−𝜏,𝑟𝑓(𝑝, 𝑞 − 𝜏, 𝑟) − 

−
1

2
𝛿𝑞,𝑟−𝜏𝑓(𝑝, 𝑞, 𝑟 − 𝜏) −

1

2
𝛿𝑝,𝑞−𝜏𝑓(𝑝, 𝑞 − 𝜏, 𝑟) −

1

2
𝛿𝑝,𝑟−𝜏𝑓(𝑝, 𝑞, 𝑟 − 𝜏) + 

+𝑓(𝑝 − 𝜏, 𝑞, 𝑟) + 𝑓(𝑝, 𝑞 −  𝜏, 𝑟) + 𝑓(𝑝, 𝑞, 𝑟 − 𝜏) −
1

2
𝛿𝑝+𝜏,𝑞𝑓(𝑝 + 𝜏, 𝑞, 𝑟) − 

−
1

2
𝛿𝑝+𝜏,𝑟𝑓(𝑝 + 𝜏, 𝑞, 𝑟) −

1

2
𝛿𝑞+𝜏,𝑟𝑓(𝑝, 𝑞 + 𝜏, 𝑟) −

1

2
𝛿𝑞,𝑟+𝜏𝑓(𝑝, 𝑞, 𝑟 + 𝜏) − 

−
1

2
𝛿𝑝,𝑞+𝜏𝑓(𝑝, 𝑞 + 𝜏, 𝑟) −

1

2
𝛿𝑝,𝑟+𝜏𝑓(𝑝, 𝑞, 𝑟 + 𝜏) + 𝑓(𝑝 + 𝜏, 𝑞, 𝑟) + 𝑓(𝑝, 𝑞 + 𝜏, 𝑟) + 

+𝑓(𝑝, 𝑞, 𝑟 + 𝜏)],                                                                                                                 (2) 

где  𝛿𝑘,𝑗 − кронекеровский символ. Сам оператор 𝐻3 на вектор 𝜓 ∈ ℋ3 действует 

по формуле  

𝐻3𝜓 = ∑ (𝐻̅3𝑓)(𝑝, 𝑞, 𝑟)𝑆𝑝
−𝑆𝑞

−𝑆𝑟
−𝜑0.𝑝,𝑞,𝑟∈𝑍𝜈                                                                    (3) 

Определение 1. Собственная функция  𝜑Ʌ ∈ 𝐿2(𝑇
𝜈) оператора 𝐻̃3Ʌ, 

отвечающая собственному значению 𝑧Ʌ ⋶ 𝜎𝑒𝑠𝑠(𝐻̃3Ʌ), называется связанным 

состоянием (СС) оператора 𝐻̃3Ʌ, а величина 𝑧Ʌ − энергией этого СС. 

Положим Ʌ1 = 𝜆 + 𝜇, Ʌ2 = 𝜇 + 𝛾  и Ʌ3 = 𝜆 + 𝛾, где  𝜆, 𝜇, 𝛾 есть квазиимпульси 

магнонов. Обозначим через  ℱ переобразование Фурье: ℱ: 𝑙2((𝑍
𝜈)3) →

𝐿2((𝑇
𝜈)3) ≡ ℋ̃3,  где 𝑇𝜈 − 𝜈 − мерный тор, снабженный нормированной мерой 

Лебега 𝑑𝜆, т.е., 𝜆(𝑇𝜈) = 1. Положим  𝐻̃3 = ℱ𝐻̅3ℱ
−1. В квазиимпульсном 

представлении оператор 𝐻̅3 действует в гильбертовом пространстве  

𝐿2
𝑠𝑦𝑚𝑚

((𝑇𝜈)3), где  𝐿2
𝑠𝑦𝑚𝑚

− подпространство симметричных функций в  

𝐿2((𝑇
𝜈)3). 

Теорема 2. Преобразование Фурье переводит оператор 𝐻̅3 в ограниченный  

cамосопряженный оператор 𝐻̃3 = ℱ𝐻̅3ℱ
−1, действуеющий в пространстве 

𝐿2
𝑠𝑦𝑚𝑚

((𝑇𝜈)3) по формуле 
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𝐻̃3𝜓3 = −𝐽{12 − 4𝑐𝑜𝑠𝜆 − 4𝑐𝑜𝑠𝜇 − 4𝑐𝑜𝑠𝛾}𝑓(𝜆, 𝜇, 𝛾) + 𝐽∫ [12 + 2 cos(𝜆 − 𝑠) +
𝑇𝜈

  

+2 cos(𝜇 − 𝑠) − 2𝑐𝑜𝑠𝑠 − 2 cos(𝜆 + 𝜇 − 𝑠) − 4𝑐𝑜𝑠𝜆 − 4𝑐𝑜𝑠𝜇 − 4𝑐𝑜𝑠𝛾] × 

× 𝑓(𝑠, 𝜆 + 𝜇 − 𝑠, 𝛾)𝑑𝑠 + 𝐽∫ [12 − 4𝑐𝑜𝑠𝜆 − 4𝑐𝑜𝑠𝜇 − 4𝑐𝑜𝑠𝛾 + 2 cos(𝜆 − 𝑠) +
𝑇𝜈

 

+2 cos(𝛾 − 𝑠) − 2𝑐𝑜𝑠𝑠 − 2 cos(𝜆 + 𝛾 − 𝑠) 𝑓(𝑠, 𝜇, 𝜆 + 𝛾 − 𝑠)𝑑𝑠 + 

+𝐽∫ [12 − 4𝑐𝑜𝑠𝜆 − 4𝑐𝑜𝑠𝜇 − 4𝑐𝑜𝑠𝛾 − 2𝑐𝑜𝑠𝑠
𝑇𝜈

− 2 cos(𝜇 + 𝛾 − 𝑠) + 

+2 cos(𝜇 − 𝑠) + 2 cos(𝛾 − 𝑠) 𝑓(𝜆, 𝑠, 𝜇 + 𝛾 − 𝑠)𝑑𝑠 + 

+𝐽∫ ∫ [12
𝑇𝜈𝑇𝜈

− 44𝑐𝑜𝑠𝜆 − 4𝑐𝑜𝑠𝜇 − 4𝑐𝑜𝑠𝛾 + 3 cos(𝜆 + 𝜇 + 𝛾 − 𝑠 − 𝑡) + 

+2 cos(𝜆 + 𝜇 − 𝑠) + 4 cos s + 2 cos(𝜆 + 𝛾 − 𝑠) + 4𝑐𝑜𝑠𝑡 + 2 cos(𝜆 + 𝜇 − 𝑡) + 

+2 cos(𝜇 + 𝛾 − 𝑡) + cos(𝜆 + 𝑡) + 2 cos(𝜇 − 𝑠 − 𝑡) + 2 cos(𝜆 − 𝑠 − 𝑡) − 

−8 cos(𝜆 − 𝑠) − 6 cos(𝜇 − 𝑡) − 8 cos(𝜆 + 𝜇 − 𝑠 − 𝑡) − 

−2 cos(𝜆 − 𝑡) 𝑓(𝑠, 𝑡, 𝜆 + 𝜇 + 𝛾 − 𝑠 − 𝑡)𝑑𝑠𝑑𝑡.                                                         (4) 

Теорема 3. a). Если  𝜈 = 2 и полный квазиимпульс системы Ʌ = (𝜋, 𝜋), 

тогда существенный спектр оператора 𝐻̃3Ʌ состоит из трёх значений: 

𝜎𝑒𝑠𝑠(𝐻̃3Ʌ) = {0,−6𝐽,−12𝐽}, и для число трехмагнонных СС  𝑁 имеет место 

соотношение 1 ≤ 𝑁 ≤ 18.  

b). Если 𝜈 = 2 и полный квазиимпульс системы Ʌ = (0,0), тогда 

существенный спектр оператора  𝐻̃3Ʌ  состоит из единственного отрезка: 

𝜎𝑒𝑠𝑠(𝐻̃3Ʌ) = [0,−48𝐽], и для число трехмагнонных СС 𝑁 имеет место 

соотношение 0≤ 𝑁 ≤ 17. 

c). Если  𝜈 = 2 и полный квазиимпульс системы  Ʌ ≠ (𝜋, 𝜋) и Ʌ ≠ (0,0), 

тогда существенный спектр оператора  𝐻̃3Ʌ состоит из объединений трех 

отрезков:   

𝜎𝑒𝑠𝑠(𝐻̃3Ʌ) = [−4𝐽(6 − 𝑐𝑜𝑠
Ʌ1
1

2
− 𝑐𝑜𝑠

Ʌ1
2

2
− 𝑐𝑜𝑠

Ʌ2
1

2
− 𝑐𝑜𝑠

Ʌ2
2

2
− 𝑐𝑜𝑠

Ʌ3
1

2
− 
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−𝑐𝑜𝑠
Ʌ3
2

2
),−4𝐽(6 + 𝑐𝑜𝑠

Ʌ1
1

2
+ 𝑐𝑜𝑠

Ʌ1
2

2
+ 𝑐𝑜𝑠

Ʌ1
2

2
+ 𝑐𝑜𝑠

Ʌ2
1

2
+ 𝑐𝑜𝑠

Ʌ2
2

2
+ 𝑐𝑜𝑠

Ʌ3
1

2
+ 

+𝑐𝑜𝑠
Ʌ3
2

2
)] ∪ [−4𝐽(2 − 𝑐𝑜𝑠

Ʌ1
1

2
− 𝑐𝑜𝑠

Ʌ1
2

2
) + 𝑧Ʌ2 + 𝑧Ʌ3 , −4𝐽 (2 + 𝑐𝑜𝑠

Ʌ1
1

2
+ 𝑐𝑜𝑠

Ʌ1
2

2
) + 

+𝑧Ʌ2 + 𝑧Ʌ3] ∪ [−4𝐽(4 −  𝑐𝑜𝑠
Ʌ1
2

2
− 𝑐𝑜𝑠

Ʌ2
1

2
− 𝑐𝑜𝑠

Ʌ2
2

2
− 𝑐𝑜𝑠

Ʌ3
1

2
− 𝑐𝑜𝑠

Ʌ3
2

2
) + 𝑧Ʌ1 , − 

−4𝐽(4 + 𝑐𝑜𝑠
Ʌ1
2

2
+ 𝑐𝑜𝑠

Ʌ2
1

2
+ 𝑐𝑜𝑠

Ʌ2
2

2
+ 𝑐𝑜𝑠

Ʌ3
1

2
+  𝑐𝑜𝑠

Ʌ3
2

2
) + 𝑧Ʌ1] и для число 

трехмагнонных СС 𝑁 имеет место соотношение 1 ≤ 𝑁 ≤ 27.  

Теорема 4. a).  Если 𝜈 = 3 и  полный квазиимпульс системы Ʌ = (𝜋, 𝜋, 𝜋), 

тогда существенный спектр оператора 𝐻̃3Ʌ состоит из четырех значений: 

𝜎𝑒𝑠𝑠(𝐻̃3Ʌ) = {0,−36𝐽, −8𝐽, −14𝐽},  и для число трехмагнонных СС  𝑁 имеет место 

соотношение 1 ≤ 𝑁 ≤ 26.  

b). Если  𝜈 = 3 и полный квазиимпульс системы  Ʌ = (0,0,0), тогда 

существенный спектр оператора  𝐻̃3Ʌ состоит из единственного отрезка: 

𝜎𝑒𝑠𝑠(𝐻̃3Ʌ) = [0,−72𝐽], и для число трехмагнонных СС 𝑁 имеет место 

соотношение 0≤ 𝑁 ≤ 25. 

c). Если  𝜈 = 3  и  полный квазиимпульс системы  Ʌ ≠ (𝜋, 𝜋, 𝜋) и  

Ʌ ≠ (0,0,0), тогда существенный спектр оператора  𝐻̃3Ʌ состоит из объединений 

трех отрезков:  

𝜎𝑒𝑠𝑠(𝐻̃3Ʌ) = [−4𝐽 (9 −∑ 𝑐𝑜𝑠
Ʌ1
𝑖

2

3

𝑖=1
−∑ 𝑐𝑜𝑠

Ʌ2
𝑖

2
−∑ 𝑐𝑜𝑠

Ʌ3
𝑖

2

3

𝑖=1

3

𝑖=1
) , 

−4𝐽(9 +∑ 𝑐𝑜𝑠
Ʌ1
𝑖

2

3

𝑖=1
+∑ 𝑐𝑜𝑠

Ʌ2
𝑖

2
−∑ 𝑐𝑜𝑠

Ʌ3
𝑖

2

3

𝑖=1

3

𝑖=1
+∑ 𝑐𝑜𝑠

Ʌ3
𝑖

2

3

𝑖=1
)] ∪ 

∪ [−4𝐽 (3 −∑ 𝑐𝑜𝑠
Ʌ1
𝑖

2

3

𝑖=1
) + 𝑧Ʌ2 + 𝑧Ʌ3 , 

−4𝐽 (3 +∑ 𝑐𝑜𝑠
Ʌ1
𝑖

2

3

𝑖=1
) + 𝑧Ʌ2 + 𝑧Ʌ3] ∪ 

∪ [−4𝐽 (6 −∑ 𝑐𝑜𝑠
Ʌ2
𝑖

2
−∑ 𝑐𝑜𝑠

Ʌ3
𝑖

2

3

𝑖=1

3

𝑖=1
) + 𝑧Ʌ1 , 
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−4𝐽(6 +∑ 𝑐𝑜𝑠
Ʌ2
𝑖

2
+∑ 𝑐𝑜𝑠

Ʌ3
𝑖

2
) + 𝑧Ʌ1]

3

𝑖=1

3

𝑖=1
, 

и для число трехмагнонных СС  𝑁 имеет место соотношение 1 ≤ 𝑁 ≤ 26,  где  

𝑧Ʌ1 ,  𝑧Ʌ2  и 𝑧Ʌ3 некоторые конкретные числа и  

Ʌ1 = (Ʌ1
1, Ʌ1

2, Ʌ1
3) ∈ 𝑇3,   Ʌ2 = (Ʌ2

1 , Ʌ2
2, Ʌ2

3) ∈ 𝑇3  и  Ʌ3 = (Ʌ3
1, Ʌ3

2, Ʌ3
3) ∈ 𝑇3. 
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Аннотация. Рассматривается задача Коши для неоднородного 

дифференциального уравнения первого порядка с функционалом-скалярным 

произведением от искомой функции в правой части. Получен результат о 

существовании, единственности решения; найдено это решение в аналитическом 

виде. 

Abstract. The Cauchy problem for an inhomogeneous first-order differential 

equation with a functional is a scalar product of the desired function on the right side. 
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The result about the existence and uniqueness of the solution is obtained; this solution 

is found in an analytical form. 

Ключевые слова: задача Коши, дифференциальное уравнение, скалярное 

произведение, решение. 

Keywords: Cauchy problem, differential equation, scalar product, solution. 

 

Постановка задачи 

Рассматривается задача Коши: 

𝑑𝑢

𝑑𝑡
=< 𝑎, 𝑢(𝑡) > 𝑏 + 𝑓(𝑡), 

(1) 

𝑢(0) = 𝑔, (2) 

где заданы постоянные векторы 𝑎, 𝑏, 𝑔 ∈ 𝑹𝑛, вектор-функция 𝑓(𝑡) ∈ 𝑹𝑛,  

𝑡 ∈ 𝔗 = [0; 𝑇]. Символом < ,> обозначено скалярное произведение в 𝑹𝑛. 

Требуется найти функцию 𝑢(𝑡), дифференцируемую и удовлетворяющую 

(1), (2) при каждом 𝑡 ∈ 𝔗.  

Будем предполагать, что < 𝑎, 𝑏 >≠ 0. 

Уравнениями (1) описывается процесс метаногенеза при изменении 

условий теплообмена с окружающей средой, межотраслевой баланс (модель В. 

Леонтьева), термомеханическое поведение полимеров и т.д. 

Вспомогательные утверждения 

Рассмотрим оператор 𝐷(∙) =< 𝑎, (∙) > 𝑏. 

Утверждение 1. Оператор 𝐷 линеен. 

Доказательство. Возьмем элементы 𝑣,𝑤 ∈ 𝑹𝑛 и скаляр 𝑐 ∈ 𝑹. Имеем: 

𝐷(𝑣 + 𝑤) =< 𝑎, (𝑣 + 𝑤) > 𝑏 =< 𝑎, 𝑣 > 𝑏+< 𝑎,𝑤 > 𝑏 = 𝐷𝑣 + 𝐷𝑤, 

что влечет аддитивность оператора D. 

Далее, 𝐷(𝑐𝑣) =< 𝑎, 𝑐𝑣 > 𝑏 = 𝑐 < 𝑎, 𝑣 > 𝑏 = 𝑐𝐷𝑣, что влечет 

однородность.  

Тем самым, линейность доказана. 
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Утверждение 2. Оператор 𝐷 ограничен. 

Доказательство. Воспользовавшись определением ограниченного 

оператора и неравенством Коши-Буняковского [1] имеем: 

‖𝐷𝑣‖ = ‖< 𝑎, 𝑣 > 𝑏‖ = |< 𝑎, 𝑣 >|‖𝑏‖ ≤ ‖𝑎‖‖𝑣‖‖𝑏‖ = 𝜇‖𝑣‖ 

с постоянной 𝜇 = ‖𝑎‖‖𝑏‖ > 0, что и влечет ограниченность оператора 𝐷. 

Утверждение 3. Степень 𝐷𝑖, 𝑖 = 1,2,… ., оператора D определяется 

формулой: 

𝐷𝑖𝑣 =< 𝑎, 𝑏 >𝑖−1< 𝑎, 𝑣 > 𝑏. 

Доказательство. Применим метод математической индукции по i. При  

𝑖 = 1 утверждение очевидно верно. Пусть оно верно для 𝑖 = 𝑘. Тогда для  

𝑖 = 𝑘 + 1 имеем: 

𝐷𝑘+1𝑣 = 𝐷(𝐷𝑘𝑣) =< 𝑎, 𝐷𝑘𝑣 > 𝑏 =< 𝑎, 𝑏 >𝑘−1< 𝑎, 𝑣 >< 𝑎, 𝑏 > 𝑏 = 

< 𝑎, 𝑏 >𝑘< 𝑎, 𝑣 > 𝑏, 

что и требовалось доказать. 

Утверждение 4. Операторная экспонента 𝑒𝑡𝐷 определяется формулой: 

𝑒𝑡𝐷𝑣 = 𝑣 +
< 𝑎, 𝑣 >

< 𝑎, 𝑏 >
(𝑒<𝑎,𝑏>𝑡 − 1)𝑏. 

Доказательство. Разложим операторную экспоненту в ряд Маклорена и 

воспользуемся предыдущим утверждением: 

𝑒𝑡𝐷𝑣 = 𝑣 +∑
𝑡𝑖

𝑖!
𝐷𝑖𝑣

∞

𝑖=1

= 𝑣+< 𝑎, 𝑣 >∑
𝑡𝑖

𝑖!
< 𝑎, 𝑏 >𝑖−1 𝑏

∞

𝑖=1

= 

𝑣 +
< 𝑎, 𝑣 >

< 𝑎, 𝑏 >
∑

𝑡𝑖

𝑖!
< 𝑎, 𝑏 >𝑖 𝑏

∞

𝑖=1

= 𝑣 +
< 𝑎, 𝑣 >

< 𝑎, 𝑏 >
(𝑒<𝑎,𝑏>𝑡 − 1)𝑏, 

что и требовалось доказать. 

Решение задачи (1), (2) 

Применив утверждения выше и результаты монографии С.Г. Крейна [2], 

получим следующий результат. 
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Теорема. Пусть 𝑓(𝑡) непрерывна. Тогда решение задачи (1), (2) 

существует, единственно и определяется формулой: 

𝑢(𝑡) = 𝑢1(𝑡) + 𝑢2(𝑡), (3) 

где 

𝑢1(𝑡) = 𝑔 +
< 𝑎, 𝑔 >

< 𝑎, 𝑏 >
(𝑒<𝑎,𝑏>𝑡 − 1)𝑏, 

𝑢2(𝑡) = ∫𝑓(𝑠) 𝑑𝑠

𝑡

0

+∫
< 𝑎, 𝑓(𝑠) >

< 𝑎, 𝑏 >
(𝑒<𝑎,𝑏>(𝑡−𝑠) − 1)𝑏 𝑑𝑠

𝑡

0

. 
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Аннотация. Поставленная задача решена в аналитическом виде методом 

универсальных быстрых разложений. Проведено сравнение полученного 

приближенного аналитического решения с тестовым, исследована погрешность 

определения прогиба пластины. Установлено, что при использовании граничной 

функции шестого порядка и только одного члена у косинусов и одного члена у 

синусов в рядах Фурье в универсальных быстрых разложениях точность 

полученного решения значительно превышает точность задания входных 

параметров задачи, определяемой концепцией сплошной среды. В этом случае 

приближенное аналитическое решение формально можно считать точным. 

Abstract. The problem is solved in analytical form using the method of universal 

fast expansions. The obtained approximate analytical solution is compared with the test 

one, the error in determining the plate deflection is investigated. It is found that when 

using a sixth-order boundary function and only one term in the cosines and one term 

in the sines in the Fourier series in universal fast expansions, the accuracy of the 

obtained solution significantly exceeds the accuracy of specifying the input parameters 

of the problem determined by the concept of a continuous medium. In this case, the 

approximate analytical solution can formally be considered exact. 

Ключевые слова: пластина, бигармоническое уравнение, прогиб, 

крутящий и изгибающие моменты, перерезывающие силы, компоненты тензора 

напряжений, универсальные быстрые разложения, высокая точность. 

Keywords: plate, biharmonic equation, deflection, torsional and bending 

moments, shear forces, stress tensor components, universal fast expansions, high 

accuracy. 

 

Уравнения равновесия для прямоугольной пластины на упругом 

основании запишем в виде неоднородного бигармонического уравнения [1] 

 
( )

( )    ( )
4 4 4

0

4 2 2 4

,
2 , , , , ,

q x yw w w
w x y x a a y b b

x x y y D D

   
+ + + =   −  −

   
 . (1) 
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Здесь ( ),w x y - вертикальное перемещение пластины, ( ),q x y  ‒ переменная 

поперечная нагрузка на поверхность, 
0  ‒ коэффициент упругой постели, D – 

цилиндрическая жесткость пластины, вычисляемая по формуле 

( )3 212 1D Eh= −  , где h – толщина пластины, E  – модуль Юнга, v  – 

коэффициент Пуассона. 

На границах пластины 
 зададим ( ),w x y  и нормальные к 

 производные  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 3 4

1 2 3 4

1 3 2 4 8

1 3 2 4

, , , ,

, , , ,

, , , , , ,
, , .

, , , , ,

x a y b x a y b

x a x ay b y b

w y w x w y w x

w w w w
y x y x

x y x y

w x y y y x x
C x y

y y x x q x y

=− =− = =

=− ==− =

=  =  =  = 

   
=  =  =  = 

   

    
   

     


 (2) 

Граничные условия (2) означают, что на 
 задано вертикальное смещение 

материальных точек пластины и упругий поворот краев пластины. Подобные 

задачи особенно сложны из-за присутствия в них производных как четного, так 

и нечетного порядков. Входными данными являются размеры пластины ( ),a b  и 

функции на границе: 

 , , 1 4i i i  =  . (3) 

При рассмотрении многомерных задач для получения аналитического 

гладкого решения возникает проблема согласования входных данных задачи (3). 

Уравнения совместности получаются после следующих рассмотрений. Из 

непрерывности перемещений в угловых точках пластины получаем первые 

четыре условия совместности  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 2 3

3 4 4 1

, , , ,

, , , .

w a b b a w a b a b

w a b b a w a b a b

− − =  − =  − − =  =  −

=  =  − =  − = 
 (4) 
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Кроме (4) в угловых точках должны выполняться условия непрерывности 

вторых смешанных производных  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 2 3 2

, ,

2 2

3 4 1 4

, ,

, ,

, .

x a y b x a y b

x a y b x a y b

w w
b a b a

x y x y

w w
b a b a

x y x y

=− =− = =−

= = =− =

 
   =  − =  − =  − = 

   

 
   =  =  =  =  −

   

 (5) 

Штрихом в (5) обозначены производные по той переменной, от которой зависит 

соответственная функция.  

К условиям совместности (4) и (5) добавим условия, связывающие 

производные от функций для перемещений, заданных в (2), с функциями для 

производных по нормали к границе 
 от перемещений из (2), т.е. 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 3

2 2

, ,

3 1

4 4

, ,

2 2

1 3

, ,

4

3

,

, ,

, ,

, ,

,

x a y b x a y by b y b

x a y b x a y by b y b

x a y b x a y bx a x a

x a y b y b

d y d yw w
a a

y dy y dy

d y d yw w
a a

y dy y dy

d x d xw w
b b

x dx x dx

d yw w
b

x dy x

=− =− = =−=− =−

= = =− == =

=− =− = =−=− =

= = =

  
= =  − = = 

 

  
= =  = =  −

 

  
= =  − = =  −

 

 
= = 

 

( )
( )4

1

,

.
x a y b y b

d x
b

dx=− = =


= = 

 (6) 

Равенства (4) - (6) будем называть условиями совместности граничных 

условий. Если же хотя бы одно из условий (4) - (6) не выполняется, то в углах 

будем иметь разрывы и тогда нельзя будет дифференцировать ряды Фурье для 

разрывных функций, т.е. нельзя их будет подставлять в дифференциальное 

уравнение равновесия упругой пластины (1). В дальнейшем будем полагать, что 

все условия согласований (4) - (6) выполнены. Критерием существования 

невыполненных условий совместности является большая неустранимая 

погрешность в угловых точках. 
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Неизвестное перемещение ( ),w x y  представим универсальным быстрым 

разложением [2] с граничной функцией не ниже четвертого порядка, так как 

дифференциальное уравнение (1) равновесия пластины имеет четвертый порядок 

 ( ) ( ) ( ) ( ) ( )
1 1

6 0

1

, , cos sin .
N

m m

m

x x
w x y M x y a y a y m b y m

a a

−

=

 
= + +  +  

 
  (7) 

Здесь 
1 1N −  – количество членов в ряде Фурье, граничная функция ( )6 ,M x y  

имеет вид 

( ) ( ) ( )
6

6

0

, q q

q

M x y A y P x
=

= ,                                            (8) 

где ( )qA y  некоторые функции от переменной y , ( )qP x  специального вида 

полиномы от переменой x  [2] 

( ) ( ) ( ) ( )

( ) ( )

( )

2 3 4 2

0 1 2 3

5 3 3 6 4 3 2

4 5

7 3 3 5
5

6

, , , ,
2 4 12 12 48 24

7 7
, ,

240 72 720 1440 288 1440

1 7 31
.

1440 7 3 21

x x x ax x ax
P x P x P x P x

a a a a

x ax a x x ax a x
P x P x

a a

x a x a x
P x ax

a

= = = − = −

= − + = − +

 
= − + − 

 

            (9) 

В (7) коэффициенты 
0 , ,m ma a b  вычисляются интегральными формулами 

Фурье по переменной x. Функции ( )qA y  находятся из выражения [2] 

( ) ( ) ( ) ( ) ( ), , , 0 6.
q q

qA y w a y w a y q= − − =                           (10) 

Равенство (10) удобно использовать, когда производные 
( ) ( ),
q

w a y  на 

концах отрезка  ,a a−  известны, т.е. когда ( ),w x y  известная функция, либо 

( )qA y  находится из граничных условий, либо из ДУ равновесия пластины. 

Формула (10) может быть модифицирована к более совершенному виду 

( ) ( ) ( )( ) ( ) ( )( )1 , 1 , , 0 6.
q q

qA y w a y w a y q= −  − − −  =                   (11) 

где   - малая величина, которую следует задавать произвольно, но меньше 

погрешности используемых физических величин, определяемых концепцией 

сплошности среды.  
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Разложение (7) позволяет свести задачу с двумя переменными ( ),x y  к 

задаче о нахождении коэффициентов 
0 6 0 1, , , , 1 1m mA A a a b m N =  −  с одной 

переменной y . Для этого подставим быстрое разложение (7) в граничные 

условия (2) и дифференциальное уравнение (1). Из граничных условий (2) 

найдем неизвестные 
0 3A A . Для определения остальных неизвестных функций 

получим замкнутую систему ( )14 2 1N+ −  дифференциальных уравнений 4-го 

порядка каждое. Далее каждую из неизвестных функций представим 

универсальным быстрым разложением по переменной y с граничной функцией 

шестого порядка 

 

 

( )

2 2

2 3 4 2

4 0 1 2 3

5 3 3 1 1

4 0

1 1

6 4 3 2 7 3 3
5

5 6

1 1
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1 7
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W W by
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   
= + + − + − +   

   
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 

 
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 

( )

2 2

5

2 3 4 2

0 0 1 2 3

5 3 3 1 1
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5 6
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7 7 31
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b y
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b b b b

y y b y y
W b y w c n s n

b b b

y by b y y b y b y
W W by

b b

− −

= =

 
=  

 

   
= + + − + − +   

   

 
+ − + + +  +  + 

 

 
+ − + + − + − 

 

 
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2 2

2 3 4 2

0 1 2 3

5 3 3 1 1

4 0 , ,

1 1

,
21

1 1

2 4 12 12 4 2

1 7
cos sin

24 10 3 30

m m m m m

N N

m m am n am n

n n

y y y y y
a y A A A by A b

b b b b

y y b y y
A b y a c n s n

b b b

− −

= =

 
 
 

   
= + + − + − +   

   

 
+ − + + +  +  + 
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 

 (12) 
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1 1

7 7 31
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1 1
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5
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7 7 31
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m m

y by b y y b y b y
B B by m N
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+

   
+ − + + − + − =  −   

   



  

В (12) 
2 1N −  - количество членов в ряде Фурье по переменной y . 

Представление неизвестных функций в виде (12) позволяет вычислять 

производные от них до шестого порядка включительно на всем отрезке 

 ,y b b − , включая и границу. Таким образом, решение задачи сводится к 

нахождению ( )( ) ( )( )1 24 2 1 8 2 1N N+ −  + −  постоянных коэффициентов, 

определяющих неизвестные функции. Для их нахождения составим линейную 

алгебраическую систему из ( )( ) ( )( )1 24 2 1 8 2 1N N+ −  + −  уравнений и решаем ее 

в программе Maple. Решение линейной алгебраической системы подставляем в 

повторные быстрые разложения (12), а затем в разложение (7). В итоге имеем 

приближенное аналитическое решение задачи (1), (2). 

Решение задачи (1), (2) можно представить в явном виде, если задать 

функции ( ) ( ) ( ) ( ) ( )2 4 2 4, , , , , ,q x y x x x x      ,x а а − . В качестве примера 

функции из (2) зададим следующим образом 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 3 2 4

3 32 2 2 2

1 3

3 32 2 2 2

2 4

0,

2 , 2 ,

2 , 2 ,

y a y a

x b x b

y y x x

y Qa y b e y Qa y b e

x Qb x a e x Qb x a e

− +

− +

 =  =  =  =

 = −  = − −

 = −  = − −

 (13) 

где Q – некоторая константа.  
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Нагрузку ( ),q x y  в (1) запишем выражением 

( ) ( )( ) ( )( ) ( )( )

( )( )) ( )( )) ( )

2 2 2 2 2 2 2 2

32 2 2 2

0

16 16 4
, 3 3

9 3 3 9

8 2 3 2 3 .
x y

D
q x y y b x x a y x a y b

y x x a y b Qe
+

 
= − − + + − + + − − +



+ + + + − −

 (14) 

Зависимости (13) и (14) подобраны так, что выполняются все условия 

совместности (4) – (6). В данном случае задача (1), (2) имеет точное решение 

 ( ) ( )( ) ( ) 32 2 2 2,
x y

Q x a y b ew x y
+

= − − −  (15) 

Точное решение (15) позволяет исследовать погрешность решения краевой 

задачи (1), (2) путем сравнения с приближенным аналитическим решением (15), 

полученным методом универсальных быстрых разложений.  

В вычислительных экспериментах, согласно оценкам, приведенных в [3,4], 

возьмем в рядах Фурье по одному члену у косинусов и у синусов, т.е. 
1 2 2N N= =

. Прогиб ( ),w x y  пластины рассчитаем по формуле (7), а изгибающие и крутящий 

моменты, перерезывающие силы и компоненты напряжений вычислим по 

формулам [1] 

( )
2 2 2 2 2

2 2 2 2
, , 1 .x y xy yx

w w w w w
M D M D M M D

x y x y x y

       
= − +  = −  + = − = −    

        
 (15) 

 
2 2 2 2

2 2 2 2
, .x y

w w w w
Q D Q D

x x y y x y

        
= − + = − +   

        
 (16) 

 
2 2 2

3 3
, , 6 , 6 , 6

2 2

y xy yx x
xz yz xy x y

Q M MQ M

h h h h h
 =  =  =  =  = . (17) 

Относительную погрешность прогиба (7), изгибающих и крутящих 

моментов (15), перерезывающих сил (16) и компонент напряжений (17), будем 

вычислять по формуле 

 max 100%f =   .  

где   ‒ абсолютная погрешность, 
maxf  – максимальное значение исследуемого 

объекта. 
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Вычисления будем проводить при значениях 

10 3

0 10000, 10 , 0.3, 10 ,E Q − = =  = =  
1010− = м, 1a = м, 1b = м, 0.05h = м. Прогиб 

( ),w x y  пластины, рассчитанный по формуле (7), изображен на рис. 1. Прогиб 

имеет плоскость симметрии, проходящую через диагональ квадрата с наиболее 

нагруженной вершиной. Максимальный прогиб пластины под нагрузкой (14) 

будет находиться не в центре, как при равномерном нагружении пластины, а 

смещен вдоль плоскости симметрии в сторону самой нагруженной вершины. 

Относительная погрешность вычислений прогиба ( ),w x y  по сравнению с 

точным решением (15) показана на рис. 2. Из рис. 2 видно, что погрешность на 

границах области равна нулю, а максимальная погрешность достигается внутри 

области. Максимальный порядок относительной погрешности составляет 
310−
%.  

На рис. 3 представлены распределения компонент напряжений в пластине. 

Из рис. 3a и рис. 3б видно, что в углах пластины 0x y =  = . Наибольшее 

значение 
x  и y  достигается на сторонах x a=  и y b=  соответственно. Точки 

с максимальным значением 
x  и y , расположены между серединами этих 

сторон и точкой ( );a b . В отличие от нормальных напряжений 
x  и y  

касательные напряжения 
xz , yz  и xy , принимают свои максимальные значения 

не на сторонах, а в точке ( );a b  пластины (рис. 3в, рис. 3г и рис. 3д). Также из 

рис. 3 можно сделать вывод, что в прямоугольной пластине при нагрузке вида 

(14) из всех касательных напряжений наибольшее значение имеет xy , которое 

на два порядка превосходят значения касательных напряжений 
xz  и yz .  
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Рис. 1. Прогиб ( ),w x y  пластины,  

рассчитанный по формуле (7) 

Рис. 2. Относительная погрешность 

вычислений прогиба  

в сравнении с точным решением (15) 

 

В заключении отметим, что универсальные быстрые разложения также 

эффективны как и быстрые синус-разложения, апробированные в работах [5-8]. 

При использовании в универсальных быстрых разложениях граничной функции 

шестого порядка достаточно учитывать в рядах Фурье один член у косинусов и 

один у синусов. Максимальный порядок относительной погрешности расчета 

прогиба пластины составит 
310−
%. Подобная малая погрешность позволяет 

формально считать полученное в статье приближенное аналитическое решение 

точным. 
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a)                                                                              б) 

     

в)                                                                              г) 

 

д) 

Рис. 3. Распределение компонент напряжений в пластине:  

а) 
x , б) y , в) 

xz , г) yz , д) xy  
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Полученное аналитическое решение при задании нагрузки на пластину и 

условий закрепления краев позволяет вычислить в любой точке перемещение, 

крутящий и изгибающие моменты, перерезывающие силы и компоненты тензора 

напряжений. Проведенные расчеты напряжений в прямоугольной пластине под 

действием специальной переменной нагрузки показали, что максимальные 

значения касательные напряжения 
xz , yz  и xy  достигаются в точке ( );a b , а 

максимальные значения нормальных напряжений 
x  и y  достигаются на 

сторонах x a=  и y b=  соответственно и расположены между серединами этих 

сторон и точкой ( );a b . 
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