Voronezh, Voronezh, Russian Federation
Voronezh State University (Kafedra materialovedeniya i industrii nanosistem, associate professor)
Russian Federation
Russian Federation
Russian Federation
New formulations for processing pine wood based on vegetable oil waste using nanoscale magnesium oxide have been studied. As a filler in the composition of impregnating compositions, coniferous wood flour was used in an amount from 1 to 3%, as well as magnesium oxide nanopowder in a dosage from 0.01 to 0.1%. Processing pine wood with compositions based on vegetable oil with additives of magnesium oxide allows to improve the hydrophobic properties of the wood surface, reduce its swelling, moisture and water absorption. The most optimal parameters were obtained from wood samples treated with a composition containing 1% wood flour, 0.01% magnesium oxide and 1% siccative.
wood, nanoscale magnesium oxide, vegetable oil, water absorption, moisture absorption
1. Dmitrenkov A.I., Nikulin S.S., Nikulina N.S., Borovskoy A.M., Nedzel'skaya E.A. Issledovanie processa propitki drevesiny berezy otrabotannym rastitel'nym maslom // Lesotehnicheskiy zhurnal. 2020. Tom 10. № 2. C. 161-168.; DOI: https://doi.org/10.34220/issn.2222-7962/2020.2/16; EDN: https://elibrary.ru/LMTLJD
2. Tomina E.V., Dmitrenkov A.I., Zhuzhukin K.V. Ispol'zovanie nanorazmernogo zno v sostavah dlya zaschitnoy obrabotki drevesiny. Izvestiya vysshih uchebnyh zavedeniy. Lesnoy zhurnal. 2022. № 4. S. 173-184.; DOI: https://doi.org/10.37482/0536-1036-2022-4-173-184; EDN: https://elibrary.ru/FCFEOF
3. Bennouna F. et al. The effect of different vegetable oils on cedar wood surface energy: theoretical and experimental fungal adhesion //International Journal of Biomaterials. 2022. T. 2022.; DOI: https://doi.org/10.1155/2022/9923079; EDN: https://elibrary.ru/FDHOFJ
4. Papadopoulos A. N. et al. Nanomaterials and chemical modifications for enhanced key wood properties: A review // Nanomaterials. 2019. Vol. 9. №. 4. P. 607.; DOI: https://doi.org/10.3390/nano9040607; EDN: https://elibrary.ru/PKSVAG
5. Darweesh, A.A.; Bauman, S.J.; Debu, D.T.; Herzog, J.B. The Role of rayleigh-wood anomalies and surface plasmons in optical enhancement for nano-gratings // Nanomaterials. 2018, Vol. 8. P. 809.; DOI: https://doi.org/10.3390/nano8100809; EDN: https://elibrary.ru/EFWTIC
6. Lou, Z.; Zhang, Y.; Zhou, M.; Han, H.; Cai, J.; Yang, L.; Yuan, C.; Li, Y. Synthesis of magnetic wood fiber board and corresponding multi-layer magnetic composite board, with electromagnetic wave absorbing properties // Nanomaterials. 2018, Vol. 8, P. 441.; DOI: https://doi.org/10.3390/nano8060441; EDN: https://elibrary.ru/VGVPUC
7. Wegner, T.H.; Jones, P. Nanotechnology for the forest products industry // Wood Fiber Sci. 2005. Vol. 37. P. 549–551.
8. Wegner, T.H.; Jones, P. Advancing cellulose-based nanotechnology // Cellulose 2005, Vol. 13, P. 115–118.
9. Ahmed S., Morén T., Sehlstedt-Persson M. et al Effect of oil impregnation on water repellency, dimensional stability and mold susceptibility of thermally modified European aspen and downy birch wood // J. Wood Sci. 2017. Vol. 63(1). P.74.; DOI: https://doi.org/10.1007/s10086-016-1595-y; EDN: https://elibrary.ru/YZWUIF
10. Hill C.A.S., Papadopoulos A.N. A review of methods used to determine the size of the cell wall microvoids of wood // J. Inst. Wood Sci. 2001. Vol. 15. P. 337–345.