Russian Federation
from 01.01.1921 until now Russian Federation
Russian Federation
This article discusses the application of the YOLO (You Only Look Once) neural network architecture for computer vision tasks. YOLO is one of the most effective models for real-time object detection. The article describes the basic principles of the network, methods for improving accuracy and speed, as well as prospects for its future development.
computer vision, artificial intelligence, machine learning
1. Evstratkin, K. S. OPENCV: varianty ispol'zovaniya komp'yuternogo zreniya / K. S. Evstratkin, A. R. Sultanova, A. V. Erpelev // Cifrovye tehnologii: nauka, obrazovanie, innovacii : Materialy III Mezhdunarodnogo nauchnogo Foruma professorsko-prepodavatel'skogo sostava i molodyh uchenyh, Moskva, 09 noyabrya 2020 goda / Pod redakciey A.V. Oleynik, A.A. Zelenskogo. – Moskva: Moskovskiy gosudarstvennyy tehnologicheskiy universitet "STANKIN", 2021. – S. 28-31. – EDN KTLCNJ.
2. Rice Fungal Diseases Recognition Using Modern Computer Vision Techniques / I. V. Arinichev, S. V. Polyanskikh, G. V. Volkova, I. V. Arinicheva // International Journal of Fuzzy Logic and Intelligent Systems. – 2021. – Vol. 21, No. 1. – P. 1-11. – DOIhttps://doi.org/10.5391/IJFIS.2021.21.1.1. – EDN CPIVQC.
3. Medvedeva, I. A. Automated complex development project based on computer vision technology / I. A. Medvedeva, M. V. Vanslav, M. A. Ragozina // Natural and Technical Sciences. – 2022. – No. 7(170). – P. 177-178. – EDN HONPYY.
4. He K., Zhang X., Ren S., Sun J. Glubokoe ostatochnoe obuchenie dlya raspoznavaniya izobrazheniy. CVPR, 2016.
5. Bochkarev S., Lempitskiy V. Glubokoe obuchenie v analize izobrazheniy: tendencii i prilozheniya. Raspoznavanie obrazov, 2021.
6. Minakova, O. V. Povyshenie effektivnosti raboty v proektah open sourse na osnove arhitekturnogo analiza (na primere proekta Sahana) / O. V. Minakova, I. V. Pocebneva, P. Yu. Gusev // Modelirovanie sistem i processov. – 2024. – T. 17, № 1. – S. 84-92. – DOIhttps://doi.org/10.12737/2219-0767-2024-17-1-84-92. – EDN NZNSKM.
7. Zarevich A.I., Makarenko F.V., Yagodkin A.S., Zol'nikov K.V. Modelirovanie povedeniya mobil'nyh robotov s ispol'zovaniem geneticheskih algoritmov // Modelirovanie sistem i processov. – 2022. – T. 15, № 3. – S. 7-16. DOI: https://doi.org/10.12737/2219-0767-2022-15-3-7-16; EDN: https://elibrary.ru/AGVATZ
8. Sazonova, S. A. Modelirovanie processa diagnostiki utechek na osnove dvuhal'ternativnoy gipotezy s uchetom pomeh ot stohastichnosti potrebleniya v gidravlicheskoy sisteme / S. A. Sazonova, I. V. Scherbakova, G. I. Smetankina // Modelirovanie sistem i processov. – 2024. – T. 17, № 1. – S. 111-120. – DOIhttps://doi.org/10.12737/2219-0767-2024-17-1-111-120. – EDN CSKRIZ.
9. Vybor kriteriya optimal'nosti pri prinyatii upravlencheskih resheniy v slozhnyh tehnicheskih sistemah / A. V. Skrypnikov, I. A. Vysockaya, S. A. Evdokimova [i dr.] // Modelirovanie sistem i processov. – 2024. – T. 17, № 1. – S. 120-128. – DOIhttps://doi.org/10.12737/2219-0767-2024-17-1-120-128. – EDN MMIAIH.