Abstract and keywords
Abstract (English):
This study explores the main challenges in developing artificial intelligence (AI)-driven software solutions for forest management in China, focusing on two ecologically and economically distinct provinces: Heilongjiang and Fujian. Findings show that limited data, environmental complexity, and regional differences in climate and forest types hinder AI implementation. Comparing the provinces shows how local factors affect AI performance and design.

Keywords:
forest management; Heilongjiang Province; Fujian Province; artificial intelligence (AI); climate and environmental challenges; wildfire detection; biodiversity monitoring
References

1. China – Forest Monitoring Dashboard // Global Forest Watch. – URL: https://www.globalforestwatch.org/dashboards/country/CHN/ (accessed: 31.05.2025).

2. Weather in Heilongjiang // ChinaDiscover.net. – URL: http://www.chinadiscover.net/heilongjiang-tourism/heilongjiang-weather.htm (accessed: 31.05.2025).

3. Climate of Harbin, China // Weather Atlas. – URL: https://www.weather-atlas.com/en/china/harbin-climate (accessed: 31.05.2025).

4. Heilongjiang // Encyclopaedia Britannica. – URL: https://www.britannica.com/place/Heilongjiang (accessed: 31.05.2025).

5. Average Weather in Fuzhou, China – Year Round // WeatherSpark. – URL: https://weatherspark.com/y/133373/Average-Weather-in-Fuzhou-China-Year-Round (accessed: 31.05.2025).

6. Average Weather in Longyan, China – Year Round // WeatherSpark. – URL: https://weatherspark.com/y/131370/Average-Weather-in-Longyan-China-Year-Round (accessed: 31.05.2025).

7. Fujian // Encyclopaedia Britannica. – URL: https://www.britannica.com/place/Fujian (accessed: 31.05.2025).

8. Ting Y., Li J., Ma L., Zhou J., Wang R., Eichhorn M. P., Zhang H. Status, advancements and prospects of deep learning methods applied in forest studies // International Journal of Applied Earth Observation and Geoinformation. – 2024. – Vol. 131. – Article 103938. – URL: https://doi.org/10.1016/j.jag.2024.103938 (accessed: 31.05.2025).

9. Jiao Q., Fan M., Tao J., Wang W., Liu D., Wang P. Forest fire patterns and lightning-caused forest fire detection in Heilongjiang Province of China using satellite data // Fire. – 2023. – Vol. 6. – Article 166. – URL: https://doi.org/10.3390/fire6040166 (accessed: 31.05.2025).

10. Cheng G., Chen X., Wang C., Li X., Xian B., Yu H. Visual fire detection using deep learning: A survey // Neurocomputing. – 2024. – Vol. 596. – Article 127975. – URL: https://doi.org/10.1016/j.neucom.2024.127975 (accessed: 31.05.2025).

11. Wu Z., Li M., Wang B., Quan Y., Liu J. Using Artificial Intelligence to Estimate the Probability of Forest Fires in Heilongjiang, Northeast China // Remote Sensing. – 2021. – Vol. 13, Article 1813. – URL: https://doi.org/10.3390/rs13091813 (accessed: 31.05.2025).

12. Yu Z., Zhang M., Zhan Y., Guo Y., Zhang Y., Liang X., Wang C., Fan Y., Shan M., Guo H., Zhou W. Analysis of Temporal and Spatial Evolution Characteristics and Peak Predic tion of Carbon Emissions in China Under the Dual-Carbon Target: A Case Study of Heilongjiang Province // Agriculture. – 2025. – Vol. 15, Article 1126. – URL: https://doi.org/10.3390/agriculture15111126 (accessed: 31.05.2025).

13. AI-powered biodiversity monitoring in forest ecosystems // PRISM – Sustainability Directory. – URL: https://prism.sustainability-directory.com/scenario/ai-powered-biodiversity-monitoring-in-forest-ecosystems/ (accessed: 31.05.2025).

14. Wang W., Zhai D., Huang B. Implementation gaps affecting the quality of biodiversity conservation management: An ethnographic study of protected areas in Fujian Province, China // Forest Policy and Economics. – 2023. – Vol. 152. – Article 102933. – URL: https://doi.org/10.1016/j.forpol.2023.102933 (accessed: 31.05.2025).

15. ZHUART: Pioneering Innovation to Drive Bamboo Industry Growth // ZhuArt Bamboo. – URL: https://zhuartbamboo.com/zhuart-pioneering-innovation-to-drive-bamboo-industry-growth/ (accessed: 31.05.2025).

16. Qi S., Song B., Liu C., Gong P., Luo J., Zhang M., Xiong T. Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine // Remote Sensing. – 2022. – Vol. 14, Article 762. – URL: https://doi.org/10.3390/rs14030762 (accessed: 31.05.2025).

17. He A., Xu Z., Li Y., Li B., Huang X., Zhang H., Guo X., Li Z. Monitoring Moso bamboo (Phyllostachys pubescens) forests damage caused by Pantana phyllostachysae Chao considering phenological differences between on-year and off-year using UAV hyperspectral images // Geo-spatial Information Science. – 2025. – Published online: 04.02.2025. – URL: https://doi.org/10.1080/10095020.2025.2454521 (accessed: 31.05.2025).

18. Chinese scientists use laser drones to count the country’s trees — all 142.6 billion of them // Live Science. – URL: https://www.livescience.com/planet-earth/plants/chinese-scientists-use-laser-drones-to-count-the-countrys-trees-all-142-6-billion-of-them (accessed: 31.05.2025).

19. China – Forest Monitoring Dashboard // Global Forest Watch. – URL: https://www.globalforestwatch.org/dashboards/country/CHN/ (accessed: 31.05.2025).

20. Weather in Heilongjiang // ChinaDiscover.net. – URL: http://www.chinadiscover.net/heilongjiang-tourism/heilongjiang-weather.htm (accessed: 31.05.2025).

21. Climate of Harbin, China // Weather Atlas. – URL: https://www.weather-atlas.com/en/china/harbin-climate (accessed: 31.05.2025).

22. Heilongjiang // Encyclopaedia Britannica. – URL: https://www.britannica.com/place/Heilongjiang (accessed: 31.05.2025).

23. Average Weather in Fuzhou, China – Year Round // WeatherSpark. – URL: https://weatherspark.com/y/133373/Average-Weather-in-Fuzhou-China-Year-Round (accessed: 31.05.2025).

24. Average Weather in Longyan, China – Year Round // WeatherSpark. – URL: https://weatherspark.com/y/131370/Average-Weather-in-Longyan-China-Year-Round (accessed: 31.05.2025).

25. Fujian // Encyclopaedia Britannica. – URL: https://www.britannica.com/place/Fujian (accessed: 31.05.2025).

26. Ting Y., Li J., Ma L., Zhou J., Wang R., Eichhorn M. P., Zhang H. Status, advancements and prospects of deep learning methods applied in forest studies // International Journal of Applied Earth Observation and Geoinformation. – 2024. – Vol. 131. – Article 103938. – URL: https://doi.org/10.1016/j.jag.2024.103938 (accessed: 31.05.2025).

27. Jiao Q., Fan M., Tao J., Wang W., Liu D., Wang P. Forest fire patterns and lightning-caused forest fire detection in Heilongjiang Province of China using satellite data // Fire. – 2023. – Vol. 6. – Article 166. – URL: https://doi.org/10.3390/fire6040166 (accessed: 31.05.2025).

28. Cheng G., Chen X., Wang C., Li X., Xian B., Yu H. Visual fire detection using deep learning: A survey // Neurocomputing. – 2024. – Vol. 596. – Article 127975. – URL: https://doi.org/10.1016/j.neucom.2024.127975 (accessed: 31.05.2025).

29. Wu Z., Li M., Wang B., Quan Y., Liu J. Using Artificial Intelligence to Estimate the Probability of Forest Fires in Heilongjiang, Northeast China // Remote Sensing. – 2021. – Vol. 13, Article 1813. – URL: https://doi.org/10.3390/rs13091813 (accessed: 31.05.2025).

30. Yu Z., Zhang M., Zhan Y., Guo Y., Zhang Y., Liang X., Wang C., Fan Y., Shan M., Guo H., Zhou W. Analysis of Temporal and Spatial Evolution Characteristics and Peak Predic tion of Carbon Emissions in China Under the Dual-Carbon Target: A Case Study of Heilongjiang Province // Agriculture. – 2025. – Vol. 15, Article 1126. – URL: https://doi.org/10.3390/agriculture15111126 (accessed: 31.05.2025).

31. AI-powered biodiversity monitoring in forest ecosystems // PRISM – Sustainability Directory. – URL: https://prism.sustainability-directory.com/scenario/ai-powered-biodiversity-monitoring-in-forest-ecosystems/ (accessed: 31.05.2025).

32. Wang W., Zhai D., Huang B. Implementation gaps affecting the quality of biodiversity conservation management: An ethnographic study of protected areas in Fujian Province, China // Forest Policy and Economics. – 2023. – Vol. 152. – Article 102933. – URL: https://doi.org/10.1016/j.forpol.2023.102933 (accessed: 31.05.2025).

33. ZHUART: Pioneering Innovation to Drive Bamboo Industry Growth // ZhuArt Bamboo. – URL: https://zhuartbamboo.com/zhuart-pioneering-innovation-to-drive-bamboo-industry-growth/ (accessed: 31.05.2025).

34. Qi S., Song B., Liu C., Gong P., Luo J., Zhang M., Xiong T. Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine // Remote Sensing. – 2022. – Vol. 14, Article 762. – URL: https://doi.org/10.3390/rs14030762 (accessed: 31.05.2025).

35. He A., Xu Z., Li Y., Li B., Huang X., Zhang H., Guo X., Li Z. Monitoring Moso bamboo (Phyllostachys pubescens) forests damage caused by Pantana phyllostachysae Chao considering phenological differences between on-year and off-year using UAV hyperspectral images // Geo-spatial Information Science. – 2025. – Published online: 04.02.2025. – URL: https://doi.org/10.1080/10095020.2025.2454521 (accessed: 31.05.2025).

Login or Create
* Forgot password?