Abstract and keywords
Abstract (English):
The article addresses the challenge of improving the efficiency of urban public transport management. It proposes an approach based on integrating data from heterogeneous sources: telematics platforms, driver state monitoring systems, subsystems for monitoring the technical condition of vehicles, and components of intelligent transportation systems.

Keywords:
passenger flow, monitoring, urban public transport, intelligent transport systems, telematics, big data, machine learning, route optimization, sensor data
References

1. Vlasov V.M., Sil'yanov V.V. Intellektual'nye sistemy upravleniya gorodskim passazhirskim transportom. – M.: MADI, 2021. – 278 s.

2. Shelest A.S., Ivanov N.K. Primenenie tehnologiy bol'shih dannyh i mashinnogo obucheniya dlya analiza passazhiropotokov v gorodskoy transportnoy sisteme // Transport: nauka, tehnika, upravlenie. — 2023. — № 5. — S. 45–51.

3. Chen X., Liu Y., Wang H. A comprehensive framework for real-time passenger flow estimation in urban rail transit using multi-sensor data fusion // Transportation Research Part C: Emerging Technologies. — 2022. — Vol. 134. — P. 103456.

4. Zhou M., Wang D., Li Q. Vision-Based Passenger Flow Monitoring and Its Application in Bus Operation Management // IEEE Transactions on Intelligent Transportation Systems. — 2023. — Vol. 24, Issue 1. — Pp. 1020-1033.

Login or Create
* Forgot password?