The article addresses the challenge of improving the efficiency of urban public transport management. It proposes an approach based on integrating data from heterogeneous sources: telematics platforms, driver state monitoring systems, subsystems for monitoring the technical condition of vehicles, and components of intelligent transportation systems.
passenger flow, monitoring, urban public transport, intelligent transport systems, telematics, big data, machine learning, route optimization, sensor data
1. Vlasov V.M., Sil'yanov V.V. Intellektual'nye sistemy upravleniya gorodskim passazhirskim transportom. – M.: MADI, 2021. – 278 s.
2. Shelest A.S., Ivanov N.K. Primenenie tehnologiy bol'shih dannyh i mashinnogo obucheniya dlya analiza passazhiropotokov v gorodskoy transportnoy sisteme // Transport: nauka, tehnika, upravlenie. — 2023. — № 5. — S. 45–51.
3. Chen X., Liu Y., Wang H. A comprehensive framework for real-time passenger flow estimation in urban rail transit using multi-sensor data fusion // Transportation Research Part C: Emerging Technologies. — 2022. — Vol. 134. — P. 103456.
4. Zhou M., Wang D., Li Q. Vision-Based Passenger Flow Monitoring and Its Application in Bus Operation Management // IEEE Transactions on Intelligent Transportation Systems. — 2023. — Vol. 24, Issue 1. — Pp. 1020-1033.



