Abstract and keywords
Abstract (English):
This paper proposes a multimodal forest ecosystem monitoring system based on the integration of remote sensing and ground-based sensor data using deep learning methods. The developed architecture ensures high accuracy in detecting fires, pest outbreaks, and illegal logging by combining visual and temporal data. The results demonstrate the system's potential for application in operational environmental monitoring and digital forest resource management.

Keywords:
multimodal monitoring, forest ecosystems, remote sensing, ground-based sensors, deep learning, neural network architectures, early threat detection
References

1. Zhang, C., Zhang, Y., & Wei, X. A review of deep learning applications in forestry using remote sensing and other data // Remote Sensing. – 2023. – Vol. 15, № 21. – P. 5152. – DOI:https://doi.org/10.3390/rs15215152

2. Papadomanolaki, M., Vakalopoulou, M., &Karantzalos, K. Multimodal deep learning for disaster detection from satellite imagery and in-situ sensors // Expert Systems with Applications. – 2024. – Vol. 239. – P. 120141. – DOI:https://doi.org/10.1016/j.eswa.2023.120141

3. Reinecke, J., Krause, A., & Steger, C. OpenForest: A data catalog for machine learning in forest monitoring // Environmental Data Science. – 2023. – Vol. 3. – Article e4. – DOI:https://doi.org/10.1017/eds.2023.4

4. Du, P., Zhang, Y., & Zhang, J. Multimodal remote sensing data fusion for forest monitoring: A review // Remote Sensing. – 2021. – Vol. 13, № 20. – P. 4065. – DOI:https://doi.org/10.3390/rs13204065

5. Zhao, W., et al. Deep learning for forest monitoring using multimodal sensor data // IEEE Transactions on Geoscience and Remote Sensing. – 2023. – Vol. 61. – P. 1–13. – DOI:https://doi.org/10.1109/TGRS.2023.3257311

6. Hong, D., Yokoya, N., &Chanussot, J. Graph convolutional networks and transformers for multitemporal remote sensing data // IEEE Transactions on Geoscience and Remote Sensing. – 2022. – Vol. 61. – DOI:https://doi.org/10.1109/TGRS.2022.3203053

7. Mal'cev, V. V. Primenenie algoritmov iskusstvennogo intellekta dlya monitoringa zagryazneniya vozduha gorodskim avtotransportom / V. V. Mal'cev // Modelirovanie sistem i processov. – 2025. – T. 18, № 2. – S. 86-96. – DOIhttps://doi.org/10.12737/2219-0767-2025-18-2-86-96. – EDNEEZDKJ.

8. Asadov, H. G. Modelirovanie temperaturnogo polya pri lesnyh pozharah / H. G. Asadov, G. Z. Bayramov // Modelirovanie sistem i processov. – 2024. – T. 17, № 4. – S. 7-15. – DOIhttps://doi.org/10.12737/2219-0767-2024-17-4-7-15. – EDNECSUWP.

Login or Create
* Forgot password?