Abstract and keywords
Abstract (English):
The article examines the influence of RGB, HSV, YCbCr, Lab color spaces in recognizing objects in an image. The work was done using a script written in Python in the Jupiter Notebook environment. The script allows you to get such metrics for comparing images as the mean square error (MSE) and processing speed for each color space. The results of the study using the metric are presented in tabular form and conclusions are made about the work done.

Keywords:
color spaces, RGB, HSV, YCbCr, Lab, neural network, computer graphics, image processing, mean square error, object recognition
References

1. Gonsales R. Cifrovaya obrabotka izobrazheniy / R. Gonsales, R. Vuds. – Moskva : Tehnosfera, 2006. – 1072 s.

2. Understanding Color Models : A Review / N. A. Ibraheem, M. M. Hasan, R. Z. Khan, P. K. Mishra. – Text : immediate // India : ARPN Journal of Science, Technology. ‒ 2012. ‒ Vol. 2, № 3. ‒ S. 265‒275.

3. Margulis D. Photoshop dlya professionalov : klassicheskoe rukovodstvo po cvetokorrekcii / D. Margulis ; perevod s angliyskogo. –5-e izd. – Moskva : Intelbuk, 2007. – 656 s.

4. Umme S. Image Quality Assessment through FSIM / S. Umme, A. Morium, S. U. Mohammad. – Text : immediate // SSIM, MSE and PSNR-A Comparative Study. – 2019. – 240 c.

Login or Create
* Forgot password?