Russian Federation
This article discusses the benefits of using geographic information systems (GIS) for the assessment and management of agroforestry belts, which play an important role in sustainable agriculture. GIS technologies allow efficient collection and analysis of spatial data, which facilitates inventory and monitoring of agroforestry belts, as well as modeling of their environmental impact. Particular attention is paid to the use of GIS to integrate soil, climate and water data, providing an integrated approach to planning and management. Examples of successful implementation of the technologies in different regions demonstrate their potential to increase biodiversity, reduce soil erosion and increase crop yields. In conclusion, the need for further development of GIS technologies and training for optimal use of agroforestry belts within the framework of sustainable development is emphasized.
agroforestry, agroforestry belts, GIS technologies
1. Vliyanie sovremennyh tehnologiy na effektivnost' sistem podderzhki prinyatiya resheniy / I. I. Vasilenko, A. L. Zolkin, T. G. Garbuzova, L. B. Ataeva // Ekonomika i predprinimatel'stvo. – 2023. – № 10(159). – S. 1366-1371. – DOIhttps://doi.org/10.34925/EIP.2023.159.10.280. – EDN VQAMKC.
2. Geoinformacionnye tehnologii komp'yuternogo proektirovaniya obschestvennyh mest gorodskih territoriy: problemy i opyt (na primere g. Saranska) / I. A. Semina, O. E. Malahova, S. A. Teslenok, N. V. Yakovenko. // Geoinformatika. – 2023. – № 4. – S. 15-28.https://doi.org/10.47148/1609-364X-2023-4-15-28.
3. Garbuzova, T. G. Vozmozhnosti cifrovizacii kompleksnoy ekologicheskoy ocenki dlya obespecheniya ekologicheskoy biobezopasnosti / T. G. Garbuzova // Ekologiya i zdorov'e cheloveka: Mater. III Vseros. nauch.-prakt. konferencii s mezhdunar. uchastiem, pamyati professora Yu.D. Zhilova, Moskva, 28 fevralya – 01 marta 2022 goda / otv. red. Yu.P. Molokanova. – Moskva: Moskovskiy gosudarstvennyy oblastnoy universitet, 2022. – S. 116-118. – EDN SVZSTC.
4. Yakovenko, N. V. GIS-tehnologii kak effektivnyy instrument issledovaniya vodno-ozernyh ob'ektov / N. V. Yakovenko, D. S. Markov, E. P. Turkina // Sovremennye problemy nauki i obrazovaniya. – 2014. – № 5. – S. 617. – EDN SZVRVH.
5. Ahmad T., Sahoo P. M., Jally S. K. (2016) Estimation of area under agroforestry using high resolution satellite data. Agrofor Syst 90: 289–303. https://doi.org/10.1007/s10457-015-9854-2.
6. Den Herder M., Moreno G., Mosquera-Losada R. M., Palma J. H., Sidiropoulou A., Freijanes J. J. S., Papanastasis V. P. (2017) Current extent and stratification of agroforestry in the European Union. Agric Ecosyst Environ 241: 121–132. https://doi.org/10.1016/j.agee.2017.03.005.
7. Leroux L., Falconnier G. N., Diouf A. A., Ndao B., Gbodjo J. E., Tall L., Roupsard O. (2020) Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal. Agric Syst 184:102918. https://doi.org/10.1016/j.agsy.2020.102918.
8. Li Y., Li M., Li C., Liu Z. (2020) Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci Rep 10: 1–12. https://doi.org/10.1038/s41598-020-67024-3.
9. Ndao B., Leroux L., Diouf A. A., Soti V., Sambou B. (2019) A remote sensing based approach for optimizing sampling strategies in tree monitoring and agroforestry systems mapping. In: Dupraz C., Gosm M., Lawson G. (eds) Proceedings of 4th World Congress on Agroforestry, Montpellier, France, 19–22 May 2019, pp. 563.
10. Sharma P., Bhardwaj D. R., Singh M. K. et al. Geospatial technology in agroforestry: status, prospects, and constraints. Environ Sci Pollut Res 30, 116459–116487 (2023). https://doi.org/10.1007/s11356-022-20305-y.
11. Zomer R. J., Trabucco A., Coe R., Place F. (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper–World Agroforestry Centre.