Abstract and keywords
Abstract (English):
This article substantiates the need to transition from ad hoc measures to a comprehensive restructuring of the urban transport system in the context of global urbanization and growing motorization. Global experience in addressing transport issues, including technological, infrastructural, and management approaches, is analyzed, and their systemic limitations are identified. The author proposes a concept for an integrated transport ecosystem, comprising five key components: smart roads, integrated technical centers, centralized energy supply, autonomous electric transport, and a unified dispatching system. It is established that the effectiveness of current solutions is reduced by their fragmentation and the lack of synergy between technological components and management platforms. The key barriers to creating a sustainable transport system are underdeveloped infrastructure for electric transport, decentralized traffic management, and inefficient use of urban space.

Keywords:
urban transport, motorization, transport system, smart road infrastructure, autonomous transport, environmental safety, sustainable mobility, intelligent management, transport ecosystem, electric transport
References

1. K 2050 godu kolichestvo avtomobiley na planete udvoitsya. URL: https://www.miit.ru/news/166770. Zagl. s ekrana. (Data obrascheniya 18.11.2025).

2. Na avtotransport prihoditsya 22 % vsego zagryazneniya vozduha v Rossii. URL: https://www.rambler.ru/eco/priroda/55342099-na-avtotransport-prihoditsya-22-vsego-zagryazneniya-vozduha-v-rossii/. Zagl. s ekrana. (Data obrascheniya 18.11.2025).

3. Kazhdyy god v mire na dorogah pogibaet okolo 1,2 mln chelovek, esche 50 mln poluchayut travmy. URL: https://ot-media.ru/news/kazhdyy-god-v-mire-na-dorogakh-pogibaet-okolo-12-mln-chelovek-eschyo-50-mln-poluchayut-travmy/. Zagl. sekrana. (Dataobrascheniya 18.11.2025).

4. Baronchelli M., Falabretti D., Gulotta F. Power demandpatterns of public electric vehiclecharging : a 2030 forecast based onreal-life data. Sustainability 2025, 17,1028. URL: https://doi.org/10.3390/su17031028. EDN: https://elibrary.ru/WPKJXG

5. Perez J., Nashashibi F., Lefaudeux B., Resende P., Pollard E. Autonomous docking based on infrared system for electricvehicle charging in urban areas. Sensors 2013, 13, 2645-2663; doihttps://doi.org/10.3390/s130202645.

6. Hardinghaus M., Anderson J. E., Nobis C., Stark K., Vladova G. Booking publiccharging : user preferences andbehavior towards public charginginfrastructure with a reservationoption. Electronics 2022, 11, 2476. https://doi.org/10.3390/electronics11162476. EDN: https://elibrary.ru/WITMKE

7. Straub F., Maier O., Göhlich D. Car-access attractivenessof urban districts regardingshopping and working trips forusage in e-mobility trafficsimulations. Sustainability 2021, 13,11345. DOI: https://doi.org/10.3390/su132011345; EDN: https://elibrary.ru/AIQFOR

8. Szagala P., Brzezinski A., Dybicz T., Olszewski P., Osinska B. Problems with implementation ofsustainable urban mobility inselected polish cities. Sustainability2024, 16, 11003. https://doi.org/10.3390/su162411003. EDN: https://elibrary.ru/LHCARK

9. Berg J., Henriksson M., Ihlström J. Comfort first! Vehicle-sharing systems in urbanresidential areas : the importance for everydaymobility and reduction of car use among pilot users. Sustainability 2019, 11, 2521; doihttps://doi.org/10.3390/su11092521.

10. Rye T., Hrelja R. Policies for reducing car traffic and their problematisation. Lessons from the mobility strategies of British, Dutch, German and Swedish cities. Sustainability 2020, 12, 8170; doihttps://doi.org/10.3390/su12198170. EDN: https://elibrary.ru/CQZAPC

11. Gunnarsson-Ostling U. Housing design and mobility convenience – the caseof Sweden. Sustainability 2021, 13, 474. https://doi.org/10.3390/su13020474. EDN: https://elibrary.ru/FAMBYX

12. Sun Y., Wu M., Li H. Using GPS trajectories to adaptivelyplan bus lanes. Appl. Sci. 2021, 11,1035. https://doi.org/10.3390/ app11031035.

13. WangH., ChenY.F., Min R., Chen Y. K. Urban DAS dataprocessing and its preliminaryapplication to city trafficmonitoring. Sensors 2022, 22, 9976.https://doi.org/10.3390/s22249976. EDN: https://elibrary.ru/XUAEVO

14. Ranieri L., Digiesi S., Silvestri B., Roccotelli M. A review of last mile logistics innovations in anexternalities cost reduction vision. Sustainability 2018, 10, 782; doihttps://doi.org/10.3390/su10030782.

15. Machado C.A., Hue N.P.M., Berssaneti F.T., Quintanilha J.A. An overview of shared mobility. Sustainability 2018, 10, 4342; doihttps://doi.org/10.3390/su10124342.

16. FilippiF. A paradigm shift for a transition to sustainable urbantransport. Sustainability 2022, 14,2853. https://doi.org/10.3390/su14052853. EDN: https://elibrary.ru/FMXSQR

17. LongN.V., LinhH.T., TuanV.A. Towards smart parking management: econometric analysis and modeling of public-parking-choice behavior in three cities of Binh Duong, Vietnam. Sustainability 2023, 15, 16936. https://doi.org/10.3390/su152416936. EDN: https://elibrary.ru/BZTBMV

18. Zhang C., Zhou R., Lei L., Yang X. Research on automaticparking system strategy. World Electr.Veh. J. 2021, 12, 200. https://doi.org/https://doi.org/10.3390/wevj12040200. EDN: https://elibrary.ru/KQHKXZ

19. Ortega J., Hamadneh J., Esztergár-Kiss D., Toth J. Simulation of the daily activity plans of travelersusing the park-and-ride system and autonomousvehicles: work and shopping trip purposes. Appl. Sci. 2020, 10, 2912; doihttps://doi.org/10.3390/app10082912. EDN: https://elibrary.ru/CZYYXC

20. Mikusova M., Abdunazarov J., Zukowska J., Jagelcak J. Designing of parking spaces on parking taking intoaccount the parameters of design vehicles. Computation 2020, 8, 71; doihttps://doi.org/10.3390/computation8030071. EDN: https://elibrary.ru/YSTQAI

21. Hossen M.I., Goh K.O.M., Tee C., Lau S. H., Hossain F. Smartphone-based context flow recognition foroutdoor parking system with machinelearning approaches. Electronics 2019, 8, 784; doihttps://doi.org/10.3390/electronics8070784.

22. Ali G., Ali T., Irfan M., Draz U., Sohail M., Glowacz A., Sulowicz M., Mielnik R., Faheem Z. B., Martis C. IoT based smart parking system using deep longshort memory network. Electronics 2020, 9, 1696; doihttps://doi.org/10.3390/electronics9101696. EDN: https://elibrary.ru/LLTKUP

23. Coulibaly M., Errami A., Belkhala S., Medromi H. A live smart parking demonstrator : architecture, data flows, and deployment. Energies 2021, 14, 1827. https://doi.org/10.3390/en14071827. EDN: https://elibrary.ru/YBXHKS

24. Olszewski R., Pałka P., Turek A. Solving «Smart city»transport problems bydesigning carpooling gamification schemes withmulti-agent systems : the case of the so-called«Mordor ofwarsaw». Sensors 2018, 18, 141; doihttps://doi.org/10.3390/s18010141.

25. ArizalaA., ZubizarretaA., Perez J. A complete framework for a behavioral planner withautomated vehicles : A car-sharingfleet relocation approach. Sensors2022, 22, 8640. https://doi.org/10.3390/s22228640. EDN: https://elibrary.ru/LFCKKQ

26. Lage M. d. O., Machado C.A.S., Monteiro C. M., Davis C. A., Yamamura C.L.K., Berssaneti F.T., Quintanilha J.A. Using hierarchical facility location, single facilityapproach, and GIS in carsharingservices. Sustainability 2021, 13, 12704.https://doi.org/10.3390/su132212704. EDN: https://elibrary.ru/JKJVEI

Login or Create
* Forgot password?