Russian Federation
The paper describes a special case of a family of Hilbert spaces. The operators that map these spaces into themselves have a simple representation in the form of the sum of a scalar operator and the operator which belong to some operator ideal. Earlier, V.I. Ovchinnikov hypothesized that the structure of operators operating in interpolation families is related to the "number" of interpolation spaces. The example given in the paper confirms this hypothesis.
Hilbert n-tuple, weight space
1. Ovchinnikov, V.I. Interpolyaciya v simmetrichno-normirovannyh idealah operatorov, deystvuyuschih v razlichnyh prostranstvah/V.I. Ovchinnikov// Funkc. analiz i ego pril. 1994. № 28(3) S.80-82 http://mi.mathnet.ru/rus/faa/v28/i3/p80 EDN: https://elibrary.ru/YUHTVM
2. Ovchinnikov, V.I. Operator ideals and interpolation in Hilbert couples/ V.I.Ovchinnikov// Vestnik VGU. Seriya: Fizika. Matematika. 2014. № 2 S.142-161 http://www.vestnik.vsu.ru/pdf/physmath/2014/02/2014-02-13.pdf EDN: https://elibrary.ru/SIOXVP
3. Kabanko, M.V. Algebra operatorov, deystvuyuschih v gil'bertovoy pare/ M.V. Kabanko// Trudy matematicheskogo fakul'teta VGU, 2001. № 6. S.54-61 https://www.researchgate.net/publication/390597158_Algebra_of_operators_acting_in_Hilbert_couple?channel=doi&linkId=67f57d2803b8d7280e2f642c&showFulltext=true



