Relations for mixed moduli of smoothness in various metrics for functions with monotone Fourier coefficients are studied in the paper.
metric, mixed moduli of smoothness, monotone Fourier coefficients
1. Kolyada V. I. O sootnosheniyah mezhdu modulyami nepreryvnosti v raznyh metrikah / V. I. Kolyada // Tr. Matem. in-ta AN SSSR.1988. T. 181. S. 117-136.
2. Ul'yanov P. L. Vlozhenie nekotoryh klassov funkciy / P. L. Ul'yanov // Izv. AN SSSR. Ser. Matem. 1968. T. 32 S. 649-686.
3. Ul'yanov P. L. Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznyh metrikah / P.L. Ul'yanov // Matem. sb.1970. T. 81 (123). № 1 S. 104-131.
4. Potapov M. K. Usilennoe neravenstvo Ul'yanova dlya smeshannyh moduley gladkosti funkciy s lakunarnymi koefficientami Fur'e / M. K. Potapov, B. V. Simonov // Vestn. Mosk. un-ta. Matem. Mehan. 2012. № 1 S. 18-24. EDN: https://elibrary.ru/ORPXKP
5. Potapov M. K. Relations for moduli of smoothness in various metrics: functions with restrictions on the Fourier coefficients / M. K. Potapov, B. V. Simonov and S. Yu. Tikhonov // Jaen Journal on Approximation. 20009. 1(2) C. 205-222.
6. Potapov M. K. Sootnosheniya mezhdu modulyami gladkosti i teoremy vlozheniya klassov Nikol'skogo / M. K. Potapov, B. V. Simonov, S. Yu. Tihonov // Tr. MIAN. 2010. T. 269 S. 204-214. DOI: https://doi.org/10.1134/S0081543810020173; EDN: https://elibrary.ru/MSQVFH
7. Trebels W. Inequalities for moduli of smoothness versus embeddings of function spaces / W. Trebels // Arch. Math. 2010. 94 C. 155-164. DOI: https://doi.org/10.1007/s00013-009-0078-4; EDN: https://elibrary.ru/MZYOYP
8. Kolomoitsev Yu. Hardy-Littlewood and Ulyanov inequalities / Yu. Kolomoitsev, S. Tikhonov // Mem. Amer. Soc. 271(1325) (2021), Arxiv: 1711.08163.
9. Potapov M. K. Drobnye moduli gladkosti / M. K. Potapov, B. V. Simonov., S. Yu. Tihonov // Moskva: MAKS Press, 2016. EDN: https://elibrary.ru/XMFHZR



