Abstract and keywords
Abstract (English):
The article proposes a new topological criterion of percolation on planar graphs, which characterizes the emergence of an infinite cluster through the geometry of configurations. Using this criterion, a generalization of the Harris–Kesten theorem for a broader class of models is proved.

Keywords:
percolation, infinite cluster, critical probability, topology, dual graph
References

1. Broadbent S.R., Hammersley J.M. Percolation processes. I. Crystals and mazes // Proc. Cambridge Philos. Soc. 1957. Vol. 53, pp. 629–641.

2. Harris T.E. A lower bound for the critical probability in a certain percolation process // Math. Proc. Cambridge Philos. Soc. 1960. Vol. 56, pp. 13–20. DOI: https://doi.org/10.1017/S0305004100034241

3. Kesten H. The critical probability of bond percolation on the square lattice equals 1/2 // Commun. Math. Phys. 1980. Vol. 74, pp. 41–59. DOI: https://doi.org/10.1007/bf01197577; EDN: https://elibrary.ru/QYWMGH

4. Grimmett G. Percolation. 2nd ed. Berlin: Springer, 1999. 444 p. DOI: https://doi.org/10.1007/978-3-662-03981-6

Login or Create
* Forgot password?