THE STUDY OF EFFECT OF HIGH HYDROSTATIC PRESSURE ON THE MECHANICAL PROPERTIES OF AL-CU BINARY ALLOYSA
Abstract and keywords
Abstract (English):
In this paper, computer simulations of influence of high hydrostatic pressure on the mechanical properties such as elastic constants and moduli, intrinsic hardness and acoustic velocities of Al, Cu, CuAl3 and AlCu3 are provided. To simulate the energy of interaction in metals and alloys, the Sutton-Chen inter-atomic potential was used. The simulation was run using the geometry optimization method with the General Utility Lattice Program (GULP) 5.1. With increment of hydrostatic pressure, the values of mechanical characteristics increased sharply. The highest percentage of increase in the in the mechanical properties was shown in the pressure step from 0 to 100 GPa. On the pressure range [0, 100], the highest percentage of increase was shown on elastic constant C44 while the lowest percentage of increase was on the transversal acoustic velocity for aluminuim. As the amount of aluminium in the alloys increases, the longitudinal acoustic velocity reduced, while the elastic constants and moduli, as well as intrinsic hardness, increased.

Keywords:
high hydrostatic pressure, bulk modulus, shear modulus, elastic constant, intrinsic hardness, acoustic velocity
Text
Text (PDF): Read Download
References

1. Karaköse, E. Structural investigations of mechanical properties of Al based rapidly solidified alloys / E. Karaköse, M. Keskin // Materials & Design. - 2011. - Vol. 3, № 10. - P. 4970-4979.

2. Güler, E.Geometry optimization calculations for the elasticity of gold at high pressure / E. Güler, M. Güler // Advances in Materials Science and Engineering. - 2013. - Vol. 2013. - 5 p. - DOI: https://doi.org/10.1155/2013/525673.

3. Kimizuka, H. Complete set of elastic constants of _-quartz at high pressure: a first-principles study / H. Kimizuka, S. Ogata, J. Li, Y. Shibutani // Physical Review B. - 2007. - Vol. 75, № 5. - P. 054109 (6 p.).

4. Gale, J. The general utility lattice program (GULP) / J.D. Gale, L.A. Rohl // Molecular Simulation. - 2003. - Vol. 29, № 5. - P. 291-341.

5. Hieu, K. High pressure melting curves of silver, gold and copper / K.H. Hieu, N.N. Ha // AIP Advances. - 2013. - Vol. 3, № 11. - P. 112125.

6. Kart, H.H. Thermal and mechanical properties of Cu-Au intermetallic alloys / H.H. Kart, M. Tomak, T. Çagin // Modelling and Simulation in Materials Science and Engineering. - 2005. - Vol. 13, № 5. - P. 657-669.

7. Desta, O.G. The Effect of High Hydrostatic Pressure on the Mechanical Properties of the Binary Alloys of the System AuAg3, AgAu3 and their Components Using Computer Simulation / O.G. Desta, M.I. Bykova, Yu.K. Timoshenko //Journal of Computer Science & Computational Mathematics. - 2021. - Vol. 11, № 4. - DOI:https://doi.org/10.20967/jcscm.2021.04.001.

8. Gale, Julian D. General Utility Lattice Program (GULP). Version 5.1 / Julian D. Gale. - Australia: Curtin University, 2020. - 180 p.

9. Januszko, A. Phonon spectra and temperature variation of bulk properties of Cu, Ag, Au and Pt using Sutton-Chen and modified Sutton-Chen potentials / A. Januszko, S.K. Bose // Journal of Physics and Chemistry of Solids. - 2015. - Vol. 82. - P. 67-75.

10. Kart, Ö. Phonon dispersions and elastic constants of disordered Pd-Ni alloys / S. Ö. Kart, M. Tomak, T. Çagın // Physica B: Condensed Matter. - 2005. - Vol. 355, № 1-4. - P. 382-391.

11. Ozgen, S. Molecular dynamics simulation of solidification kinetics of aluminium using Sutton-Chen version of EAM / S. Ozgen, E. Duruk // Materials Letters. - 2004. - Vol. 58, № 6. - P. 1071-1075.

12. Tian, T. Ab initio calculations on elastic properties in L12 structure Al3X and X3Al type (X = transition or main group metal) intermetallic compounds / T. Tian, X. F. Wang, W. Li // Solid state communications. - 2013. - Vol. 156. - P. 69-75.

13. Dubrovinsky, L. Noblest of all metals is structurally unstable at high pressure / L. Dubrovinsky, N. Dubrovinskaia, A. W. Crichton, et al. // Physical review letters. - 2007. - Vol. 98, № 4. - P. 045503.

14. Luan, X. The Mechanical Properties and Elastic Anisotropies of Cubic Ni3Al from First Principles Calculations / X. Luan, H. Qin, F. Liu et al. // Crystals. - 2018. - Vol. 8, № 8. - P. 307-318.

15. Kong, G. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first principles calculations / G. Kong, X. Ma, Q. Liu et al. // Physica B: Condensed Matter. - 2018. - Vol. 533. - P. 58-62.

16. Rafii-Tabar, H. Long-range Finnis-Sinclair potentials for fcc metallic alloys / H. Rafii-Tabar, A.P. Sulton // Philosophical Magazine Letters. - 1991. - Vol. 63, № 4. - P. 217-224.

17. Musa, S.M. Computational Finite Element Methods in Nanotechnology / S.M. Musa. - CRC Press, 2012. - 640 p.

18. Karimbeigi, A. Effect of composition and milling time on the synthesis of nanostructured Ni-Cu alloys by mechanical alloying method / A. Karimbeigi, A. Zakeri, A. Sadighzadeh // Iranian Journal of Materials Science & Engineering. - 2013. - Vol. 10, № 3. - P. 27-31.

19. Hu, M. Measuring velocity of sound with nuclear resonant inelastic X-ray scattering // M. Hu // Physical Review B. - 2003. - Vol. 67, № 9. - P. 094304.

20. Niranjan, M.K. First principles study of structural, electronic and elastic properties of cubic and orthorhombic RhSi / M.K. Niranjan // Intermetallics. - 2012. - Vol. 26. - P. 150-156.

21. Flynn, T. Cryogenic engineering, revised and expanded / T. Flynn. - New York: Marcel Dekker, 2005. - 895 p.

Login or Create
* Forgot password?