СНИЖЕНИЕ ВЫБРОСОВ ЗАГРЯЗНЯЮЩИХ ВЕЩЕСТВ АВТОТРАНСПОРТА СИСТЕМОЙ РЕЦИРКУЛЯЦИИ ОТРАБОТАВШИХ ГАЗОВ (EGR)
Аннотация и ключевые слова
Аннотация (русский):
В статье рассмотрены основные загрязняющие вещества в выхлопных газах автомобилей и система их снижения – рециркуляция отработавших газов (EGR).

Ключевые слова:
загрязняющие вещества, выхлопные газы, двигатель внутреннего сгорания, автотранспорт, система рециркуляции
Список литературы

1. Lazarev E.A. Peculiarities of gas pressure development depending on the intensity of a burning fuel in the diesel engine cylinder / E.A. Lazarev, M.A. Matculevich, V.E. Lazarev // Procedia Engineering. – 2016. – Vol. 150. – pp. 132-137. – DOIhttps://doi.org/10.1016/j.proeng.2016.06.735.

2. Engine emissions with air pollutants and greenhouse gases and their control technologies / A. Fayyazbakhsh, M.L. Bell, X. Zhu [et al.] // Journal of Cleaner Production. – 2022. – Vol. 376. – 134260. – DOIhttps://doi.org/10.1016/j.jclepro.2022.134260.

3. The role of NOx emission reductions in Euro 7/VII vehicle emission standards to reduce adverse health impacts in the EU27 through 2050 / E. Mulholland, J. Miller, Y. Bernard [et al.] // Transportation Engineering. – 2022. – Vol. 9. – P. 100133. – DOIhttps://doi.org/10.1016/j.treng.2022.100133.

4. Eldesouki M.H. A comprehensive overview of carbon dioxide, including emission sources, capture technologies, and the conversion into value-added products / M.H. Eldesouki, A.E. Rashed, A. El-Moneim // Clean Technologies and Environmental Policy. – 2023. – Vol. 25. – pp. 3131-3148. – DOIhttps://doi.org/10.1007/s10098-023-02599-9.

5. Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy / J.J. Rose, L. Wang, Q. Xu [et al.] // Am J Respir Crit Care Med. – 2017. – 195(5). – pp. 596-606. – DOIhttps://doi.org/10.1164/rccm.201606-1275CI.

6. Effects of air pollutants on airway diseases / Y.-G. Lee, P.-H. Lee, S.-M. Choi [et al.] // Int J Environ Res Public Health. – 2021. – 18(18). – 9905. – DOIhttps://doi.org/10.3390/ijerph18189905.

7. Guo Q. On the optimization of the double-layer combustion chamber with and without EGR of a diesel engine / Q. Guo, J. Liu, B. Wu, Y. Liu // Energy. – 2022. – Vol. 247. – 123486. – DOIhttps://doi.org/10.1016/j.energy.2022.123486.

8. Numerical analysis of fuel injection configuration on nitrogen oxides formation in a jet engine combustion chamber / D. Cerinski, M. Vujanović, Z. Petranović [et al.] // Energy Conversion and Management. – 2020. – Vol. 220. – 112862. – DOIhttps://doi.org/10.1016/j.enconman.2020.112862.

9. Hannan A. Exhaust gas recirculation as a nobel technique for NOx emission control / A. Hannan, S.M K. Khan, Md.M. Islam // Asian J. Con. Sci. Technol. – 2019. – Vol. 01, № 01. – pp. 9-12. – DOIhttps://doi.org/10.5281/zenodo.2823109.

10. Environmental and health impacts of air pollution: A review / I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou // Front Public Health. – 2020. – Vol. 8. – 14. DOIhttps://doi.org/10.3389/fpubh.2020.00014.

11. Efficiency improvement of the productivity of the motor transport enterprise due to the expense of rational age structure / T. K. Balgabekov, S. Zh. Kabikenov, G. S. Zholdybayeva [et al.] // Journal of Advanced Research in Technical Science. – 2018. – № 8. – pp. 72-79. – DOI:https://doi.org/10.15413/ajer.2017.0317.

12. The impact of changing the fuel dose on chosen parameters of the diesel engine start-up process / J. Caban, P. Droździel, P. Ignaciuk, P. Kordos // Transport Problems. – 2019. – Vol. 14, №4. – pp. 51-62. – DOIhttps://doi.org/10.20858/tp.2019.14.4.5.

13. Potential for future reductions of global GHG and air pollutants from circular waste management systems / A. Gómez-Sanabria, G. Kiesewetter, Z. Klimont [et al.] // Nature Communications. – 2022. – Vol. 13 – 106. – DOIhttps://doi.org/10.1038/s41467-021-27624-7.

14. Reşitoğlu İ.A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems / İ.A. Reşitoğlu, K. Altinişik, A. Keskin // Clean Techn Environ Policy. – 2015. – 17. – pp. 15-27. – DOIhttps://doi.org/10.1007/s10098-014-0793-9.

15. Emission characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) from used mineral oil combustion / L. Xu, J. Yu, G. Wan, L. Sun // Fuel. – 2021. – Vol. 304. – 121357. – DOIhttps://doi.org/10.1016/j.fuel.2021.121357.

16. A review of particulate number (PN) emissions from gasoline direct injection (GDI) engines and their control techniques / M. Raza, L. Chen, F. Leach, S. Ding // Energies. – 2018. – 11 (6). – 1417. – DOIhttps://doi.org/10.3390/en11061417.

17. Particle emissions from mobile sources: Discussion of ultrafine particle emissions and definition / D. Kittelson, I. Khalek, J. McDonald [et al.] // Journal of Aerosol Science. – 2022. – Vol. 159. – 105881. – DOIhttps://doi.org/10.1016/j.jaerosci.2021.105881.

18. Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options / P.T. Aakko-Saksa, K. Lehtoranta, N. Kuittinen [et al.] // Progress in Energy and Combustion Science. – 2023. – Vol. 94. – 101055. – DOIhttps://doi.org/10.1016/j.pecs.2022.101055.

19. Stanislaus A. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production / A. Stanislaus, A. Marafi, M.S. Rana // Catalysis Today. – 2010. – Vol. 153, № 1-2. – pp. 1-68. – DOIhttps://doi.org/10.1016/j.cattod.2010.05.011.

20. An Overview of Vehicular Emission Standards / S. Singh, M.J. Kulshrestha, D.K. Aswal [et al.] // MAPAN. – 2023. – 38(1). – pp. 241-263. – DOIhttps://doi.org/10.1007/s12647-022-00555-4.

21. Models of expert assessments and their study in problems of choice and decision-making in management of motor transport processes / V.P. Belokurov, S.V. Belokurov, R.A. Korablev, A.A. Shtepa // Journal of Physics: Conference Series, Tomsk, 17–20.01.2018. – Tomsk, 2018. – 032132. – DOIhttps://doi.org/10.1088/1742-6596/1015/3/032132.

22. Technology options: Can Chinese power industry reach the CO2 emission peak before 2030? / Y. Tao, Z. Wen, L. Xu [et al.] // Resources, Conservation and Recycling. – 2019. – Vol. 147. – pp. 85-94. – DOIhttps://doi.org/10.1016/j.resconrec.2019.04.020.

23. Besma T. CO2 emissions reduction in road transport sector in Tunisia // Renewable and Sustainable Energy Reviews. – 2017. – 69. – pp. 232-238. – DOIhttps://doi.org/10.1016/j.rser.2016.11.208.

24. Automotive Statistics : [website]. - Moscow, 2022 -– URL: https://www.autostat.ru/news/55373/ (Accessed: December 8, 2023). - Text: electronic.

25. Neugebauer M. Cumulative emissions of CO2 for electric and combustion cars: A case study on specific models / M. Neugebauer, A. Żebrowski, O. Esmer // Journals Energies. – 2022. – Vol. 15 (7). – 2703. – DOIhttps://doi.org/10.3390/en15072703.

26. Statistics : [website]. - Moscow, 2022 – URL: https://www.statista.com/statistics/1035535/russia-number-of-road-accidents/ (Accessed: December 8, 2023). - Text: electronic.

27. European regulatory framework and particulate matter emissions of gasoline light-duty vehicles: a review / B. Giechaskiel, A. Joshi, L. Ntziachristos, P. Dilara // Catalysts. – 2019. – 9 (7). – 586. – DOIhttps://doi.org/10.3390/catal9070586.

28. Determination of Euro 6 LPG passenger car emission factors through laboratory and on-road tests: Effect on nation-wide emissions assessment for Italy / T. Bellin, S. Casadei, T. Rossi [et al.] // Atmospheric Environment: X. – 2022. – Vol. 10. – 100186. – DOIhttps://doi.org/10.1016/j.aeaoa.2022.100186.

29. Al-Arkawazi S.A.F. Analyzing and predicting the relation between air–fuel ratio (AFR), lambda (λ) and the exhaust emissions percentages and values of gasoline-fueled vehicles using versatile and portable emissions measurement system tool // SN Appl. Sci. – 2019. Vol. 1. – 1370. – DOIhttps://doi.org/10.1007/s42452-019-1392-5.

30. Palladium, iridium, and rhodium supported catalysts: predictive H2 chemisorption by statistical cuboctahedron clusters model / F. Drault, C. Comminges, F. Can [et al.] // Materials. – 2018. – 11. – 819. – DOIhttps://doi.org/10.3390/ma11050819.

31. Electrocatalytic activities of platinum and palladium catalysts for enhancement of direct formic acid fuel cells: An updated progress / Z.A.C. Ramli, J. Pasupuleti, T.S.T. Saharuddin [et al.] // Alexandria Engineering Journal. – 2023. – Vol. 76. – pp. 701-733. – DOIhttps://doi.org/10.1016/j.aej.2023.06.069.

32. CeO2 as a photocatalytic material for CO2 conversion: A review / D.P.H. Tran, M.-T. Pham, X.-T. Bui [et al.] // Solar Energy. – 2022. – Vol. 240. – pp. 443-466. – DOIhttps://doi.org/10.1016/j.solener.2022.04.051.

33. Heywood J.B. Internal combustion engine fundamentals. 2nd ed. / New York: McGraw-Hill Education. – 2018. – pp. 504-541. – URL: https://www.accessengineeringlibrary.com/content/book/9781260116106 (Accessed: December 8, 2023). - Text: electronic.

34. Gas phase sulfation of ceria-zirconia solid solutions for generating highly efficient and SO2 resistant NH3-SCR catalysts for NO removal / W. Tan, J. Wang, L. Li [et al.] // Journal of Hazardous Materials. – 2020. – Vol. 388. – 121729. – DOIhttps://doi.org/10.1016/j.jhazmat.2019.121729.

35. The study of thermal stability of Mn-Zr-Ce, Mn-Ce and Mn-Zr oxide catalysts for CO oxidation / T.N. Afonasenko, D.V. Glyzdova, V.L. Yurpalov [et al.] // Materials (Basel). – 2022. – 15 (21). – 7553. – DOIhttps://doi.org/10.3390/ma15217553.

36. Thermal stability of zirconia-doped ceria surfaces: A first-principles molecular dynamics study / G. Zhou, W.-T. Geng, W. Xiao [et al.] // Applied Surface Science. – 2020. – Vol. 507. – 144942. – DOIhttps://doi.org/10.1016/j.apsusc.2019.144942.

37. Kumar M.V. Investigation of the combustion of exhaust gas recirculation in diesel engines with a particulate filter and selective catalytic reactor technologies for environmental gas reduction / M.V. Kumar, A.V. Babu, Ch.R. Reddy // Case Studies in Thermal Engineering. – 2022. – Vol. 40. – 102557. – DOIhttps://doi.org/10.1016/j.csite.2022.102557.

Войти или Создать
* Забыли пароль?