Russian Federation
Russian Federation
This paper analysed the emotional tone of Russian-language product reviews in the category “Women's clothing and accessories”. The dataset containing more than 97 thousand reviews was studied using various methods of text processing and analysis.
data analysis, text processing, machine learning, machine learning methods
1. M. Thelwall, K. Buckley, G. Paltoglou, D. Cai and A. Kappas. Sentiment strength detection in short informal text. 2010.
2. C. Gomez-Rodriguez, I. Alonso-Alonso and D. Vilares. How important is syntactic parsing accuracy? An empirical evaluation on rule-based sentiment analysis. 2019.
3. E. Cambria, S. Poria, R. Bajpai and B. Schuller. SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. 2016
4. S. Baccianella, A. Esuli and F. Sebastiani. SentiWordNet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. 2010.
5. L. Gatti, M. Guerini and M. Turchi. SentiWords: Deriving a high precision and high coverage lexicon for sentiment analysis. 2016.
6. N. Loukachevitch and A. Levchik. Creating a general Russian sentiment lexicon. 2016. EDN: https://elibrary.ru/XXORKX
7. O. Y. Koltsova, S. Alexeeva and S. Kolcov. An opinion word lexicon and a training dataset for Russian sentiment analysis of social media. 2016. EDN: https://elibrary.ru/XMXUOJ
8. H. Schutze, C. D. Manning and P. Raghavan. Introduction to Information Retrieval. 2008.
9. J. R. Quinlan. Induction of decision trees. Mach. Learn., 1986.
10. D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein and M. Klein. Logistic Regression. 2002.
11. S. R. Gunn. Support vector machines for classification and regression. 1998.
12. D. Tang, B. Qin and T. Liu. Deep learning for sentiment analysis: Successful approaches and future challenges. 2015.
13. GitHub – rureviews.
14. Smetanin, S., Komarov, M. Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks. National Research University Higher School of Economics, 2019. DOI: https://doi.org/10.1109/CBI.2019.00062; EDN: https://elibrary.ru/CFHASL
15. Algoritmy ob'edineniya informacii o web-stranicah s fonovymi ontologicheskimi znaniyami / E.V. Konoval'chuk, V.V. Lavlinskiy, S.N. Yan'shin [i dr.] // Modelirovanie sistem i processov. – 2019. – T. 12, № 2. – S. 32-37. DOI: https://doi.org/10.12737/10.12737/article_5db1e3e60bef13.23500137; EDN: https://elibrary.ru/DSSKYU