Russian Federation
The paper examines current issues in existing methods for assessing the radiation hardness of CMOS integrated circuits under proton irradiation in the space environment. Methodological limitations of TID, DDD, and NIEL-scaling models, as well as dose-rate and thermal annealing effects, are analyzed. The need for an integrated approach combining modeling, experimental testing, and simulation to improve the reliability of radiation hardness prediction is demonstrated.
CMOS, proton irradiation, TID, DDD, NIEL-scaling, SEE, radiation hardness, space electronics
1. ECSS-Q-ST-60-15C Rev.1. Radiation hardness assurance. – Noordwijk: European Cooperation for Space Standardization, 2025. – URL: ecss.nl (data obrascheniya: 27.09.2025).
2. Gaza, R. i dr. The NASA Radiation Hardness Assurance (ORS) Process Standard. – Washington, DC: NASA Technical Reports Server, 2024. – 32 p. – URL: ntrs.nasa.gov (data obrascheniya: 27.09.2025).
3. Coronetti, A. Proton Direct Ionization Upsets at Tens of MeV. – CERN Document Server, 2023. – 10 p. –URL: cds.cern.ch (data obrascheniya: 27.09.2025).
4. Chen, N.; Wang, Y.; Zhang, S. Atomistic simulation of displacement damage and effective NIEL // Physical Review Materials. – 2021. – Vol. 5, № 3. – Art. 033603. –URL: link.aps.org (data obrascheniya: 27.09.2025). DOI: https://doi.org/10.1103/physrevmaterials.5.033603; EDN: https://elibrary.ru/AHDTOO
5. Impact of proton radiation and annealing of CMOS image sensors // AIP Advances. – 2024. – Vol. 14, № 9. – Art. 095221. – URL: pubs.aip.org (data obrascheniya: 27.09.2025). DOI: https://doi.org/10.1063/5.0222128
6. Radiation Effects on Scientific CMOS Detectors for X-ray Astronomy : preprint. – arXiv:2403.15764, 2024. – 28 p.– URL: arxiv.org (data obrascheniya: 27.09.2025).
7. Shumarin, S. V.; Martynov, A. V.; Baburin, N. V. Modifikaciya SPICE-modeley KMOP-mikroshem dlya imitacii chastotnogo otklika kol'cevogo generatora na nizkointensivnoe ioniziruyuschee vozdeystvie // Elektronika i elektrooborudovanie transporta. – 2024. – № 2. – S. 5–16.– URL: cyberleninka.ru (data obrascheniya: 27.09.2025).
8. Sogoyan, A. V.; Martynov, E. A.; Dolgov, E. N. Normy ispytaniy na stoykost' k protonnomu i neytronnomu izlucheniyam: podhody i ogranicheniya // Bezopasnost' informacionnyh tehnologiy. – 2025. – T. 32, № 1. – S. 45–63. –URL: bit.spels.ru (data obrascheniya: 27.09.2025). DOI: https://doi.org/10.26583/bit.2025.1.01; EDN: https://elibrary.ru/IAUKTO
9. High Total Ionizing Dose Effects on Backside-Illuminated CMOS Image Sensors : preprint. – 2025. – URL: researchgate.net (data obrascheniya: 27.09.2025).
10. Pellish, J. A. i dr. Criticality of Low-Energy Protons in Single-Event Effects Testing. – Greenbelt, MD: NASA/GSFC, 2014. – 25 p.– URL: ntrs.nasa.gov (data obrascheniya: 27.09.2025).
11. Schwank, J. R. i dr. Hardness Assurance Testing for Proton Direct Ionization Effects. – Sandia Report SAND2011-(nomer ne ukazan). – Albuquerque, NM: Sandia National Laboratories, 2011. – 18 p.– URL: osti.gov (data obrascheniya: 27.09.2025).
12. Dijks, J. i dr. Systematic review of engineering and testing approaches in radiation hardness assurance // Acta Astronautica. – 2025. – In press. – URL: sciencedirect.com (data obrascheniya: 27.09.2025).
13. The Influence of Electronic Stopping on Displacement Damage and the Correction of Effective NIEL Model : preprint. – 2024/2025.– URL: researchgate.net (data obrascheniya: 27.09.2025).
14. Kotlyarov V. V., Anciferova V. I. Vozdeystviya staticheskih potokov protonov na fizicheskie processy v bipolyarnyh tranzistorah, razlichnogo konstruktivnogo ispolneniya // Modelirovanie sistem i processov. 2025. №. 2. S. 78-86. DOI: https://doi.org/10.12737/2219-0767-2025-18-2-78-86 (data obrascheniya: 15.10.2025). EDN: https://elibrary.ru/YTRXXB



